• 제목/요약/키워드: Solid Element

검색결과 975건 처리시간 0.034초

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • 류지승;노태민;김진성;정철원;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

접촉식 밀봉 링의 변형거동 안정성에 관한 유한요소해석 (Finite Element Analysis on the Deformation Behavior Stability of Contact Sealing Rings)

  • 김청균;김도현
    • 한국가스학회지
    • /
    • 제16권5호
    • /
    • pp.47-51
    • /
    • 2012
  • 본 연구에서는 3가지의 서로 다른 단면형상을 갖는 밀봉 링의 변형거동 안정성을 FEM으로 해석하였다. NBR 소재로 제조한 밀봉 링의 변형거동 안정성을 고찰하기 위해 초기 압축률로 25%를 적용하였다. 작동유체의 압력을 최대 $25kgf/cm^2$까지 올렸을 때 발생한 최대변형률, 최대응력, 최대접촉법선응력을 해석하였다. FEM 결과에 의하면, 밀봉 링의 중심부에 빈 공간을 확보한 중공오링과 중공사각링의 최대 변형률은 기존 오링에 비해 높아졌지만, 최대응력과 최대접촉법선응력은 떨어지는 것으로 나타났다. 결국, 밀봉 링이 장수명의 내구 안정성을 확보하기 위해서는 중심부에 빈 공간을 확보하는 것이 권장된다. 그렇지만, 접촉식 밀봉 링의 밀봉 안전성을 확보하기 위해서는 밀봉 링을 하나의 몸체로 설계하는 것이 바람직하다.

3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화 (Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model)

  • 김원철;정태진
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.309-314
    • /
    • 2014
  • 기계나 토목 구조물의 형상은 일반적으로 전통적인 방법들을 이용하여 얻었다. 예를 들면 전력송전탑이나 해상풍력 하부구조물 이외의 다른 구조물들도 조직적으로 만든다. 한편 컴퓨터 그래픽의 급속한 성장으로 인해, 진화된 구조해석 및 최적설계기법들을 이용하고 있다. 본 논문에서는 해상 풍력 터빈을 위한 자켓 구조물의 구조형상을 위상최적화 기법을 통하여 연구하였다. 이번 연구는 실제작동하중상태로 시뮬레이션을 위하여 다 하중으로 종속시켰으며, 최적화 목적 함수는 주어진 경계조건아래 컴플라이언스로 정의하였다. 최적화는 고유진동수와 체적을 구속함수로 사용하였으며, 1 단계 모델의 결과는 2 단계 구조를 위한 외형을 빠르게 볼 수 있도록 한다. 그 결과로 사각뿔대의 3D 모델은 위상최적화를 통하여 개발하였다.

Fly-ash 흡착기법을 이용한 열분해유 정제 (Pyrolysis oil refining by Fly-ash absorption)

  • 임은정;김성현;전병희;선우환;정익철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2011
  • Plastic product is increasing by the growth of its demand and most of refused plastics are incinerated or reclaimed. However, the refused plastic is not easily decomposed and has the environmental problem with its various toxic gas in case of incineration. Therefore, many countries such as USA, Japan, Germany and other developed industrial countries as well as Korea are interested in studying the recyclable resource of refused plastic. The macromolecular waste pyrolysis has the advantage of collecting of raw materials in high price and can at least get fuel gas or oil with high heat capacity. It also discharges low waste gas and low toxic gas including SOx, NOx and HCl heavy metals. However, pyrolyzed oil includes enough excess unsaturated hydrocarbons to form tar, which can cause the nozzle of engines to plug when pyrolyzed oil is used as fuel. Activated carbon was proven to have prominent adsorption capability among the other adsorbents that were mainly composed of carbon. This study examined the possibility of application in activated charcoal of its solid formation by analysing the feature of pyrolysis which is one of the chemical recycling methods and getting chemical analysis of the product and activated energy. Analyze the element of the oil produced by pyrolysis using GC-MS. The experiment of tar adsorption using fly-ash showed that fly-ash improved the optical intensity of pyrolyzed oil and decreased oxygen compounds in the pyrolyzed oil.

  • PDF

카리장석의 유기농 무와 비트 생육촉진효과 (Effect of Potash Feldspar on the Growth of Organic Radish and Beet)

  • 심창기;김민정;김용기;홍성준;박종호;한은정;김석철;이승복
    • 한국유기농업학회지
    • /
    • 제24권3호
    • /
    • pp.413-425
    • /
    • 2016
  • 칼륨(K)은 식물의 생육에 필요한 기본 요소 중의 하나이다. 본 연구는 분상, 입상, 사상의 카리장석 제형별로 유기농 무와 비트의 생육에 미치는 영향을 구명하고자 수행하였다. 시설하우스에서 15일 육묘한 무와 비트 묘를 정식하기 전에 3종의 0.1% 카리장석을 토양에 혼화 처리하였다. 처리한 모든 종류의 카리장석은 무와 비트의 뿌리 경도를 제외하고 무처리에 비해 유의적으로 무와 비트의 뿌리, 줄기생육 및 당도를 향상시켰다. 특히, 분상 카리장석이 가장 효과적으로 무와 비트의 생육을 촉진하였다. 농가에서 유기농 비트와 무의 근권에 카리장석을 시용할 경우 지상부와 지하부의 생육을 촉진할 수 있을 것으로 판단한다.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

Alternative reliability-based methodology for evaluation of structures excited by earthquakes

  • Gaxiola-Camacho, J. Ramon;Haldar, Achintya;Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;Vazquez-Becerra, G. Esteban;Vazquez-Hernandez, A. Omar
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.361-377
    • /
    • 2018
  • In this paper, an alternative reliability-based methodology is developed and implemented on the safety evaluation of structures subjected to seismic loading. To effectively elaborate the approach, structures are represented by finite elements and seismic loading is applied in time domain. The accuracy of the proposed reliability-based methodology is verified using Monte Carlo Simulation. It is confirmed that the presented approach provides adequate accuracy in calculating structural reliability. The efficiency and robustness in problems related to performance-based seismic design are verified. A structure designed by experts satisfying all post-Northridge seismic design requirements is studied. Rigidities related to beam-to-column connections are incorporated. The structure is excited by three suites of ground motions representing three performance levels: immediate occupancy, life safety, and collapse prevention. Using this methodology, it is demonstrated that only hundreds of deterministic finite element analyses are required for extracting reliability information. Several advantages are documented with respect to Monte Carlo Simulation. To showcase an applicability extension of the proposed reliability-based methodology, structural risk is calculated using simulated ground motions generated via the broadband platform developed by the Southern California Earthquake Center. It is validated the accuracy of the broadband platform in terms of structural reliability. Based on the results documented in this paper, a very solid, sound, and precise reliability-based methodology is proved to be acceptable for safety evaluation of structures excited by seismic loading.

애니메이션, 실사영화, 디지털영화의 프레임과 미장센 특성 비교연구 (Comparative Study On Frame And Mise-en-Scene in Animation, Live-Action Movies & Digital Cinema)

  • 금보상
    • 만화애니메이션 연구
    • /
    • 통권11호
    • /
    • pp.41-53
    • /
    • 2007
  • 최근의 영화는 기존의 애니메이션과 실사영화라는 범주로 나눌 수 없을 만큼 그 경계가 모호하다. 디지털영화의 등장이 애니메이션과 실사영화의 경계를 허물고 있는 것이다. 이 논문은 애니메이션과 실사영화, 디지털영화의 프레임과 이를 근간으로 한 미장센의 특성을 다루고 있다. 애니메이션과 실사영화는 각각 회화적, 사진적 프레임 특성을 가지고 있지만, 합성이미지를 근간으로 하는 디지털영화는 두 양식의 프레임 특성을 모두 갖게 된다. 이는 결국 영화작가의 표현스타일인 미장센의 차이로 나타난다.

  • PDF

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.