• Title/Summary/Keyword: Solid Element

Search Result 975, Processing Time 0.026 seconds

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.

An effective solution of electro-thermo-structural problem of uni-axially graded material

  • Murin, J.;Kutis, V.;Masny, M.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.695-713
    • /
    • 2008
  • The aim of this contribution is to present a new link/beam finite element suitable for electrothermo-structural analysis of uni-axially graded materials. Continuous polynomial variation of geometry and material properties will be considered. The element matrix and relations for solution of Joule's heat (and its distribution to the element nodes) have been established in the sense of a sequence method of a coupled problem solution. The expression for the solution of nodal forces caused by a continuously distributed temperature field has also been derived. The theoretical part of this contribution is completed by numerical validation, which proves the high accuracy and effectiveness of the proposed element. The results of the performed experiments are compared with those obtained using the more expensive multiphysical link element and solid element of the FEM program Ansys. The proposed finite element could be used not only in the multiphysical analysis of the current paths and actuators but also in analysis of other 1D construction parts made of composite or uni-axially graded materials.

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

Structural analysis of a prestressed segmented girder using contact elements in ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2017
  • Studying the structural behavior of prestressed segmented girders is quite important due to the large use this type of solution in viaducts and bridges. Thus, this work presents a nonlinear three-dimensional structural analysis of an externally prestressed segmented concrete girder through the Finite Element Method (FEM), using a customized ANSYS platform, version 14.5. Aiming the minimization of the computational effort by using the lowest number of finite elements, a new viscoelastoplastic material model has been implemented for the structural concrete with the UPF customization tool of ANSYS, adding new subroutines, written in FORTRAN programming language, to the main program. This model takes into consideration the cracking of concrete in its formulation, being based on fib Model Code 2010, which uses Ottosen rupture surface as the rupture criterion. By implementing this new material model, it was possible to use the three-dimensional 20-node quadratic element SOLID186 to model the concrete. Upon validation of the model, an externally prestressed segmented box concrete girder that was originally lab tested by Aparicio et al. (2002) has been computationally simulated. In the discretization of the structure, in addition to element SOLID186 for the concrete, unidimensional element LINK180 has been used to model the prestressing tendons, as well as contact elements CONTA174 and TARGE170 to simulate the dry joints along the segmented girder. Stresses in the concrete and in the prestressing tendons are assessed, as well as joint openings and load versus deflection diagrams. A comparison between numerical and experimental data is also presented, showing a good agreement.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis

  • Yousef A. Alessi;Ibrahim Ali;Mashhour A. Alazwari;Khalid Almitani;Alaa A Abdelrahman;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.179-202
    • /
    • 2023
  • This article presents a numerical analysis to investigate the natural frequencies and harmonic response of a perforated cantilever beam attached to two layers of piezoelectric materials by using the finite element method for the first time. The bimorph piezoelectric is composed of 3 layers; two of them at the outer are piezoelectric, and the inner isotropic material. A higher order 3-D 20-node solid element that exhibits quadratic displacement behavior is exploited to discretize the isotropic layer, and coupled piezoelectric 3D element with twenty nodes is used to mesh the top and bottom layers. CIRCU94 element is added to act as a resistor part of the model. The proposed model is validated with previous works. The numerical parametric studies are presented to illustrate the effects of perforation geometry, the number of rows, the resistance on the natural frequencies, frequency response, and power. It is found that the thickness has a positive relationship with the natural frequency. Perforations help in producing higher voltage, and the best shape is rectangular perforations, and to produce higher voltage, two rows of rectangular perforations should be applied.