• 제목/요약/키워드: Solid Catalysts

검색결과 171건 처리시간 0.025초

Catalytic Effects of Barium Carbonate on the Anodic Performance of Solid Oxide Fuel Cells

  • Yoon, Sung-Eun;Ahn, Jae-Yeong;Park, Jong-Sung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.350-355
    • /
    • 2015
  • To develop ceramic composite anodes of solid oxide fuel cells without metal catalysts, a small amount of barium carbonate was added to an $(La_{0.8}Sr_{0.2})(Cr_{0.5}Mn_{0.5})O_3(LSCM)$ - YSZ ceramic composite anode and its catalytic effects on the electrode performance were investigated. A barium precursor solution with citric acid was used to synthesize the barium carbonate during ignition, while a barium precursor solution without citric acid was used to create hydrated barium hydroxide. The addition of barium carbonate to the ceramic composite anode caused stable fuel cell performance at 1073 K; this performance was higher than that of a fuel cell with $CeO_2$ catalyst; however, the addition of hydrated barium hydroxide to the ceramic composite anode caused poor stability of the fuel cell performance.

고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석 (Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery)

  • 박인영;장재용;임동욱;김태우;심상은;박석훈;백성현
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구 (A Study on the Influence of the Structural Characteristics of Cu/CeO2 Catalyst on the Low-Temperature Oxidation of Carbon Monoxide)

  • 김민수;최경륜;김세원;홍성창
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.286-292
    • /
    • 2020
  • 본 연구는 Cu/CeO2-X 촉매의 저온 CO 산화 활성에 미치는 영향을 촉매의 구조적 특성, 반응 특성을 통해 확인하였다. 사용된 촉매는 습윤 함침법으로 제조되었으며, 각기 다른 소성온도(300~600 ℃)에서 형성된 CeO2 (지지체)를 이용하여 Cu (활성금속)를 담지함으로써 Cu/CeO2-X 촉매를 제조하였다. 제조된 Cu/CeO2-X 촉매는 저온 CO 산화 활성을 평가하였다. 125 ℃에서 Cu/CeO2_300 촉매는 90% 이상의 활성을 나타냈으며, CeO2의 소성온도가 증가됨에 따라 활성이 점차 감소하여, Cu/CeO2_600 촉매는 65%를 나타냈다. 다음으로 촉매의 물리/화학적 특성을 Raman, BET, XRD, H2-TPR, XPS 분석으로 확인하였다. XPS 분석 결과, CeO2-X의 소성온도가 낮을 수록 불안정한 Ce3+ 종(비 화학양론 종) 비율이 증가하였다. 증가된 Ce3+종은 Cu와 결합함으로 써 치환결합을 형성하였으며 Raman 분석의 CeO2 peak 변화와 H2-TPR 분석의 치환결합 구조의 환원 peak를 통해 확인하였다. 결과적으로 Cu와 CeO2의 치환 결합 형성은 촉매의 redox 특성 및 저온 CO 산화 활성을 증진시켰다고 판단된다.

고체산 촉매에서의 1-펜텐의 골격이성화반응 (The Skeletal Isomerization of 1-Pentene over Solid Acid Catalysts)

  • 홍성수;우희철;이근대
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.902-912
    • /
    • 1996
  • 여러 가지의 고체산 촉매에 의한 1-펜텐의 골격이성화 반응에서 반응활성, 선택도, 반응메카니즘 및 촉매의 산의 세기와 촉매활성과의 관계를 연구하였다. 여러 가지의 고체산 촉매중에서 천연제올라이트가 가장 높은 활성을 보여주었고, 불소나 황산으로 처리된 ${\eta}$-알루미나는 변형되지 않은 경우에 비해 활성이 크게 증가하였다. 한편 반응온도가 증가할수록 이소펜텐의 수율이 증가하였고, 접촉시간의 증가에 따라 이소펜텐의 수율이 증가하였다. 그러나 높은 반응온도와 아주 긴 접촉시간에서는 크래킹 반응의 생성물이 증가하였다. 금속이온으로 치환된 천연제올라이트에서의 활성은 감소하였고, 이것은 금속이온의 polarizing power와 관계가 있는 것으로 나타났다. 암모니아 승온탈착실험 결과에 의하면 촉매의 활성은 촉매의 산의 세기와 밀접한 관계가 있는 것으로 나타났다.

  • PDF

니켈 담지촉매의 니켈 담지량에 따른 활성 변화 (Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading)

  • 김상범;박은석;천한진;김영국;김명수;박홍수;함현식
    • 한국응용과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.230-236
    • /
    • 2003
  • Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

일산화탄소의 선택적 산화반응을 위한 Cu-CeO2 촉매의 개발 (Development of Cu-CeO2 Catalysts for Selective Oxidation of CO)

  • 정창렬;한종희;윤성필;남석우;임태훈;홍성안;이호인
    • 청정기술
    • /
    • 제8권1호
    • /
    • pp.53-59
    • /
    • 2002
  • 공침-액상산화법으로 $Cu-CeO_2$ 촉매를 제조하여 선택적 산화반응에 대한 활성을 실험적으로 고찰하였다. $Cu-CeO_2$ 촉매는 일산화탄소의 선택적 산화반응에 우수한 활성을 보였으나, 구리의 담지량과 촉매 활성 사이의 일정한 상관관계를 찾을 수 없었다. 또한 구리의 담지량이 증가함에 따라 $CeO_2$의 세공 구조가 변하는 것을 확인할 수 있었으며 이는 Cu와 $CeO_2$가 고용체를 형성하기 때문으로 확인되었다. 촉매 전처리인 환원처리를 통한 Cu와 $CeO_2$의 고용체 형성이 촉매의 일산화탄소의 선택적 산화반응에 대한 활성을 증가시켰다.

  • PDF

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권4호
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.