Browse > Article
http://dx.doi.org/10.12925/jkocs.2003.20.3.6

Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading  

Kim, Sang-Bum (Department of Chemical Engineering, Myongji University)
Park, Eun-Seok (Department of Chemical Engineering, Myongji University)
Cheon, Han-Jin (Department of Chemical Engineering, Myongji University)
Kim, Young-Kook (Department of Chemical Engineering, Myongji University)
Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
Park, Hong-Soo (Department of Chemical Engineering, Myongji University)
Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
Publication Information
Journal of the Korean Applied Science and Technology / v.20, no.3, 2003 , pp. 230-236 More about this Journal
Abstract
Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.
Keywords
synthesis gas; partial oxidation; Ni catalysts; solid solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Z. Luo, Z. L. Yu, C. F. Ng, and C. TAu, J. Catal. 194, 198 (2000)   DOI   ScienceOn
2 J. D. Grunwaldt, L. Basini, and B. S.Clausem, J. CataI., 200, 321 (2001)   DOI   ScienceOn
3 C. Elmasides and X. E. Verykios, J.CataI., 203, 477 (2001)   DOI   ScienceOn
4 K. L. Hohn and L. D. Schmidt, Appt.Catal. A: Gen, 211, 53 (2001)   DOI   ScienceOn
5 E. Ruckenstein and Y. H. Hu, Appt. Catat.A: Gen., 183, 85 (1999)   DOI   ScienceOn
6 H. Y. Wang and E. Ruckenstein, J. CataI.,186, 181 (1999)   DOI   ScienceOn
7 T. V. Choudhary, C. Sivadinarayama, C.C. Chusuei, A. Klinghoffer, and D. W.Goodman, J. Catal., 199, 9 (2001)   DOI   ScienceOn
8 S. Tang, J. Lin, and K. L. Tan, Catal.Lett., 51, 169 (1998)   DOI
9 S. Wang and G. Q. Lu, Energy & Fuels 10, 896 (1996)   DOI   ScienceOn
10 Y. Zhang, G. Xiong, S. Sheng, and W.Yang, Catalysis Today, 63, 517 (2000)   DOI   ScienceOn
11 H. Provendier, C. Petit, C. Estoumes, S.Libs, and A. Kiennemann, AppI CataI. A:Gen., 180, 163 (1999)   DOI
12 F. Arena, F. Fruster, A. Parmaliana L.Plyasova, and A. N. Shmakov, J. Chem.Soc. Faraday Trans.. 92, 469 (1996)   DOI
13 M. E. S. Hegarty, A. M. O'Connor, and J.R. H. Ross, CataIysis Today, 42, 25(1998)   DOI   ScienceOn
14 M. A. Pena, J. P. Gomez, and J. L. G. Fierro, AppI. Catat. A: Gen., 144, 7(1996)   DOI   ScienceOn
15 R. Craciun, B. Shereck, and R, J, Gorte,Catat. Lett., 51, 149 (1998)   DOI
16 K. H. Hofstad, J. H. B. J. Hoebink, A.Holmen, and G. B. Mahn, CatatysisToday, 40, 157 (1998)
17 T. L. Barr, "Modem ESCA: Phnciples andpractice of X-ray photoelectron spectroscopy", 1st ed., CRC Press, Boca Raton(1994)
18 Y. Ji, W. Li, H. Xu, and Y. Chen, Catal.Lett., 71(1-2), 45 (2001)
19 I. Wender, FueI Process. Tech., 48, 189(1996)   DOI   ScienceOn
20 T. Zhu and M. F. Stephanopoulos, Aool.Catal. A: Gen., 208, 403 (2001)   DOI   ScienceOn
21 Z. W. Liu, H. S. Roh, K. W. Jun, S. E.Park, and T. Y. Song, Korean J. Chem.Eng., 19, 742 (2002)   DOI   ScienceOn
22 H. Y. Wang and E. Ruckenstein, CataI.Lett., 59, 121 (1999)   DOI
23 M. C. J. Bradford and M. A. Vannice AppI. Catat. A: Gen., 142, 73 (1996)   DOI   ScienceOn