• Title/Summary/Keyword: Solenoid-Driven Injector

Search Result 23, Processing Time 0.017 seconds

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar (분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구)

  • Han, Sangik;Kim, Juhwan;Ji, Hyungsun;Go, Junchae;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

Spray and Combustion Characteristics of Diesel and JP-8 in a Heavy-Duty Diesel Engine Equipped with Common-Rail Fuel Injection System (커먼레일을 장착한 대형 디젤엔진에서 디젤과 JP-8의 분무 및 연소특성 평가)

  • Jeon, Jin-Woog;Lee, Jin-Woo;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3019-3025
    • /
    • 2008
  • An experimental study was performed to assess the effect of diesel and JP-8 aviation fuel on the spray characteristics, performance and emissions in a single cylinder optical diesel engine. Both fuels were injected via an 8-hole solenoid-driven injector in a common-rail injection system. For better understanding of spray development, the macroscopic images were captured with high speed camera, offered evidences for the results of performance and emissions. From macroscopic spray images, the spray tip penetration of JP-8 shorter than that of diesel while spray angle of JP-8 was wider than that of diesel. It indicates that the vaporization of JP-8 is superior to that of diesel. The lower cetane number of JP-8 resulted in increased portion of premixed combustion. The IMEP with JP-8 is lower than that of diesel-fueled engine. Especially, using JP-8 has a potential for reducing soot.

  • PDF