• Title/Summary/Keyword: Solenoid type common rail injector

Search Result 15, Processing Time 0.022 seconds

A Computer Simulation of Injection Rate Characteristics of Solenoid Type Common Rail Injector According to Injector Driving Current Patterns (인젝터 구동 전류 패턴 변화가 솔레노이드 타입 커먼레일 인젝터 분사율 특성에 미치는 영향에 대한 컴퓨터시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.114-121
    • /
    • 2019
  • The effect of injector driving current pattern on fuel injection rate of solenoid diesel common rail injector was studied by computer simulation. The time resolved fuel injection rate and injected quantity per stroke of a common rail injector driven with the five current patterns were computer simulated. The fuel injection rate and injected quantity per stroke according to the rail pressure and fuel injection period were also computer simulated. When the common rail injector was driven with the five driving current patterns of peak & hold, there was no difference in the fuel injection rate in the peak section regardless of all the current patterns of the five cases. On the other hand, the magnitude of the hold current value influenced the injection rate and injected quantity per stroke. That is, in the current pattern of three cases where the hold current value is equal to or more than a constant value of the peak current value, the fuel injection rates for the given common rail rail pressure and injection period are same one another. On the other hand, the current pattern of the two cases, in which the hold current value is smaller than a certain value, there is a large fluctuation in the fuel injection rate.

Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System (3가지 니들구동방식별 CRDi 디젤엔진용 고압 인젝터의 거시적 분무특성 비교해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The capability of high pressure injection with small fuel quantify at all engine operating conditions is one of the main feature in common rail fuel injection system, which is used in small and light-duty Diesel engine. The key parameter for the better atomized fuel sprays and multiple injections of this common rail fuel injection control, that can be freely selected irrespective of the engine speed and load is the mechanism controlling the needle energizing and movement in high pressure Diesel injector. In the electro-hydraulic injector, the injection nozzle is being opened and closed by movement of the injector's needle which is balanced by pressure between the nozzle seat and the needle control chamber. This study describes the macroscopic spray structure characteristics of the common rail Diesel injectors with different electric driving method i.e. the solenoid-driven and piezo-driven type. The macroscopic spray characteristics such as spray tip speed. spray tip penetration and spray cone angle were investigated by the high speed spray, which is measured by the back diffusion light illumination method with optical system for the high speed temporal photography in a constant volume chamber pressurized by nitrogen gas. As the results, the prototype piezo-driven injector system was designed and fabricated for the first time in domestic case and the effect of injector's needle response driven by different drive type was compared between the solenoid and piezo-driven injector It was found therefore. that the piezo-driven injector showed faster needle response and had better needle control capability by altering the electric input value than the solenoid-driven injector.

Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection (고압 분사용 Piezo 인젝터의 Pilot 분무특성)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

Analysis of Pilot Spray Characteristics of Different Driven Injectors for High Pressure Diesel Engine (다른 구동방식을 갖는 고압 디젤 엔진용 인젝터의 Pilot 분무 특성 해석)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.251-256
    • /
    • 2003
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors, solenoid-driven and piezo-driven type, with different electric driving characteristics So, three common-rail injectors with different electric current wave were used in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of solenoid-driven injector to know the condition of initial injection at experiment test. It was found that pilot injection of common-rail system was effected by rate of injection and temperature of injected fuel and electrical characteristic of the driven injector.

  • PDF

Effect of Injector-driven Type on Spray Behavior and Fuel Atomization Characteristics (인젝터 구동 방식에 따른 분무 거동 및 분무 미립화 특성)

  • Park, Ji-Hong;Suh, Hyun-Kyu;Park, Sung-Wook;Kim, Jae-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • This study was performed to figure out spray behavior and fuel atomization characteristics of a piezo-driven injector and a solenoid-driven injector in the common-rail injection system under the same design parameters and test conditions. The process of spray injection was visualized by using the spray visualization system composed of a Nd:YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer system. Compared with solenoid-driven injector, the piezo-driven injector has short injection delay and reaches quickly to the maximum injection value. Spray tip penetration shows some difference, however, spray angle of piezo-driven injector is wider than that of solenoid-driven injector. Sauter mean diameter of piezo-driven type injector is smaller than that of solenoid-driven type.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

A Study on Characteristics of Injected Fuel Pressure Waves of a Solenoid Type Diesel Common Rail Injector with Controlling Current Wave for Driving the Injector (솔레노이드 타입 디젤 커먼레일 인젝터 구동을 위한 전류 파형 변화에 따른 분사 연료 압력파 특성)

  • Kim, Kil Tae;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • Injected fuel pressure waves of a common rail injector with various current profiles supplied to the injecor were measured using Bosch method. In order to drive the common rail injector, the current in the solenoid should be controlled using what is known as a peak and hold pattern, which consists of a high current level with a short time duration (peak) in the first step and a low current level with a long time duration (hold) in the subsequent step. The current profile can be shaped by swithcing an injector driving power source with the peak and hold waves. The capture, compare and PWM (CCP) pin in the microprocessor was used to generate the combined peak and hold waves. The PWM square wave generated from the CCP pin has a duty ratio of 100% for the peak current and 10% or 30% for the hold pattern. Five patterns of the current profile were generated by combining the peak and hold wave. The common rail pressure is controlled at 75, 100, and 130 MPa. As the fuel rail pressure increases, the variations of the measured fuel injection pressure wave according to the current profiles decrease.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.