• Title/Summary/Keyword: Solder cleaning

Search Result 27, Processing Time 0.017 seconds

Fluxless Plasma Soldering of Pb-free Solders on Si-wafer -Effect of Plasma Cleaning - (Si-wafer의 플럭스 리스 플라즈마 무연 솔더링 -플라즈마 클리닝의 영향-)

  • 문준권;김정모;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • To evaluate the effect of plasma cleaning on the soldering reliability the plasma cleaning using Ar-10vol%$H_2$ gas was applied on a UBM(Under Bump Metallization). The UBM consisted of Au/ Cu/ Ni/ Al layers which were deposited on a Si-wafer with 20 nm/ 4 $\mu\textrm{m}$/ 4 $\mu\textrm{m}$/ 0.4 $\mu\textrm{m}$ thickness respectively. Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-37%Pb solder balls sized of 500 $\mu\textrm{m}$ in diameter were used. Solder balls on the UBM were plasma reflowed under Ar-10%$H_2$ plasma (with or without plasma cleaning). They were compared with air reflowed solder balls with flux. The spreading ratios of plasma reflowed solder with plasma cleaning was 20-40% higher than that of plasma reflowed solder without plasma cleaning. The shear strength of plasma reflowed solder with plasma cleaning was about 58-65MPa. It showed 60-80% higher than that of plasma reflowed solder without plasma cleaning and 15-35% higher than that of air reflowed solder. Thus it was believed that plasma cleaning for the UBM using Ar-10vol%$H_2$ gas was considerably effective for the improvement of the strength of solder ball.

  • PDF

A Study on the Fluxless Bonding of Si-wafer/Solder/Glass Substrate (Si 웨이퍼/솔더/유리기판의 무플럭스 접합에 관한 연구)

  • ;;;N.N. Ekere
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • UBM-coated Si-wafer was fluxlessly soldered with glass substrate in $N_2$ atmosphere using plasma cleaning method. The bulk Sn-37wt.%Pb solder was rolled to the sheet of $100\mu\textrm{m}$ thickness in order to bond a solder disk by fluxless 1st reflow process. The oxide layer on the solder surface was analysed by AES(Auger Electron Spectroscopy). Through rolling, the oxide layer on the solder surface became thin, and it was possible to bond a solder disk on the Si-wafer with fluxless process in $N_2$ gas. The Si-wafer with a solder disk was plasma-cleaned in order to remove oxide layer formed during 1st reflow and soldered to glass by 2nd reflow process without flux in $N_2$ atmosphere. The thickness of oxide layer decreased with increasing plasma power and cleaning time. The optimum plasma cleaning condition for soldering was 500W 12min. The joint was sound and the thicknesses of intermetallic compounds were less than $1\mu\textrm{m}$.

  • PDF

A Study on Formulation of Surfactant-free Aqueous Cleaning agents and Evaluation of Their Physical Properties and Cleaning Ability (계면활성제 무첨가 세정제의 배합 및 물성/세정성 평가 연구)

  • Lee, Jae Ryoung;Yoon, Hee Keun;Lee, Min Jae;Bae, Jae Heum;Bae, Soo Jeong;Lee, Ho Yeoul;Kim, Jong Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.219-225
    • /
    • 2013
  • Environment-friendly and surfactant-free aqueous cleaning agents have been developed in order to solve various problems generated by surfactants in the aqueous cleaning agents. Aqueous surfactant-free cleaning agents, S-1 and S-2 have been formulated with water-soluble solvents such as propylene glycol and propylene glycol ether on their main components and with some additives. These solvents were chosen because of their good solubility in water and excellent solubility of fluxes which are major contaminants of printed circuit board in the electronic industry. Physical properties of the formulated and the imported cleaning agents were measured to predict their cleaning performance, and their cleaning abilities of flux and solder contaminants were evaluated under the various ultrasonic frequencies by a gravimetric method. The measurement results show that the physical properties of cleaning agent V are generally similar with those of formulated cleaning agents S-1 and S-2. Both the cleaning agent V and the formulated cleaning agents S-1 and S-2 showed similar trends that their pH decrease in the beginning and then increases later on with the increase of their dilution in water. It is considered that the wetting indices of the cleaning agents calculated with experimental values do not not have any influence on their cleaning ability. In ultrasonic cleaning tests under three ultrasonic frequencies of 28, 45, and 100 kHz, their best performances of cleaning solder and flux were obtained at 45 kHz and 28 kHz, respectively, and the cleaning performance of the formulated cleaning agents S-1 and S-2 was better than that of the cleaning agent V. However, in the case of the recommended diluted concentration of 25 wt% cleaning solution, the cleaning performance of the cleaner V for solder and flux was better in the initial stage of cleaning compared to the formulated cleaners. And it may be concluded that the formulated cleaning agents S-1 and S-2 can be applied to cleaning of solder and flux in the industry, based on the experimental results in this study.

Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment (SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향)

  • Lee, Ah-Reum;Jo, Seung-Jae;Park, Jai-Hyun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

A Study on the Evaluation Methods of Residual Flux Cleaning Ability by Alternative Semi-Aqueous Cleaners Using Metal Test Tools After Soldering with Solder Paste (솔더페이스트로 솔더링 후 잔류 플럭스 오염물에 대한 준수계 세정제의 금속치구를 이용한 세정성능 평가방법 연구)

  • Lee, Dong-Kee
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • In this study, in order to develop evaluation method of the cleaning efficiency of residual flux which remains on the surface after soldering with solder paste, a specially designed metal tool is used to reduce spread uncertainty of flux while soldering. Using this tool, the measurement of cleaning efficiency of flux after soldering for some typical alternative semi-aqueous cleaners and 1,1,1-TCE by weighing method was conducted. As the test result of cleaning efficiency for each cleaner at several different cleaning times, the precision of the data is confirmed to within about 4% relative standard deviation (RSD) range. So, it is considered that this would be a good evaluation method for evaluating the cleaning efficiency of the residual flux which remains after solder paste soldering in the alternative cleaning. The results of this test method shows that the cleaning efficiency of ST 100SX and Neozal 750H in the cleaning of residual flux was better than other semi-aqueous cleaners, but its cleaning efficiency was clearly inferior to 1,1,1-TCE.

  • PDF

A Study on Wettability and Defects Behavior of Flow-soldered Joint using Low Residue Flux (저잔사 플럭스를 사용한 플로우 솔더링부의 젖음성 및 결함거동에 관한 연구)

  • 최명기;이창열;정재필;서창제;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 1998
  • Effects of non-cleaning and cleaning fluxes on the wetting properties and defects at flow soldered joints were investigated. Non-cleaning flux (R-type of 3.3% solid content) and cleaning flux (RMA-type of 15% solid content) were used. Wetting test was accomplished by wetting balance method with changing surface state of wetting specimen, CU. Sn-37%Pb solder was used for wetting test and flow soldering. As experimental results, the wetting time for vertical force from the surface tension being zero was mainly affected by surface state of the wetting specimen. Non-cleaning flux had a good wettability compared with cleaning flux. In case of non-cleaning flux, conveyor speed had a great affection to defects of bridge, icicle, and poor solder.

  • PDF

A Study on the Cleanliness Evaluation Methods for the Selection of Alternative Cleaning Agents (대체 세정제의 선정을 위한 세정성 평가방법 연구)

  • Shin, Jin-Ho;Lee, Jae-Hoon;Bae, Jae-Heum;Lee, Min-Jae;Hwang, In-Gook
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • In this study various cleaning evaluation methods were tested and comparatively evaluated to help cleaning industry. In order to select alternative cleaning agents objectively and systematically, various cleaning evaluation methods such as gravimetric, optically simulated electron emission (OSEE), contact angle, and analytical instrument methods were employed for cleaning contaminants such as flux, solder and grease. The analytical instruments used in this work were Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-VIS) and high performance liquid chromatography (HPLC). The gravimetric method was able to measure cleaning efficiencies easily and simply, but it was not easy to analyze them precisely because of its limitation in the gravimetric measurement. However, the OSEE technique was able to measure quickly and precisely the clean ability of cleaning agents in comparison with the gravimetric method. The contact angle method was found to be necessary for taking special precaution in its application to the cleaning evaluation due to possible formation of tiny organic film on the substrate surface which might be generated from contaminants and cleaning agents. In case of precision analysis that cannot be done by gravimetric method, fine analytical instruments such as UV-VIS, FTIR and HPLC could be used in analyzing trace amount of flux, solder and grease quantitatively, which were extracted from the surface by special solvents.

Influencing Factors on Cleaning Ability in the Formulated Hydrocarbon-based Cleaning Agents (탄화수소계 배합세정제에서의 세정성 영향인자 연구)

  • Jung, Young-Woo;Lee, Ho-Yeoul;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • The objective of this study is to develop hydrocarbon-based cleaning agents by blending paraffins, glycol ethers and siloxanes in oder to effectively clean contaminants such as flux, solder and grease. And the effect of cleaning ability by wetting index, aniline points and solubility parameter of the formulated hydrocarbon-based cleaning agents were studied in this work. The formulated hydrocarbon-based cleaning agents were prepared on the base of physical properties of their individual components. Wetting indexes and aniline points of their were measured through experiments and solubility parameters of their were calculated based on the Hansen's equation. In this study, evaluation of cleaning ability by cleaning agents were carried out using contaminants such as flux, solder, and grease. The experimental results showed that the cleaning ability of the formulated cleaning agents was excellent in cleaning contaminants such as flux, solder and grease and that the influencing parameters on their cleaning efficiency were found to be different according to contaminant types. MC($20.3MPa^{1/2}$), DF-1 ($24.2MPa^{1/2}$) and DF-2($21.5MPa^{1/2}$) with similar solubility parameter as flux ($21.3MPa^{1/2}$) showed 100% cleaning efficiency within 3 minutes in flux cleaning. And CFC-113, MC and 1,1,1-TCE with low aniline point less than $-20^{\circ}C$ showed excellent cleaning efficiency in solder cleaning. DG-1($16.2\;MPa^{1/2}$) and DG-2($15.5\;MPa^{1/2}$) with similar solubility parameter as grease($15.0{\sim}17.0\;MPa^{1/2}$) showed relatively low cleaning efficiency of grease, but CFC-113 and MC with high wetting index and low aniline point showed good cleaning efficiency in grease cleaning. As a result of this study, the hydrocarbon-based cleaning agents alternative to regulated cleaning agents such as CFC-113, 1,1,1-TCE and MC were able to be developed through properly blending paraffins, glycol ethers and siloxanes for cleaning flux, solder and grease. And it can be shown that various influencing parameters of cleaning efficiency such as wetting index, aniline point, solubility parameter and etc. of the non-aqueous cleaning agent should be reviewed for prediction of their cleaning ability and can be applied to formulation of cleaning agents.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF