• Title/Summary/Keyword: SolarCell

Search Result 3,159, Processing Time 0.026 seconds

Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs (태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석)

  • Shin, Donghun;Kim, Tae Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

Effect of Solar Cell Cover Glass on Solar Cell Performance (태양전지 보호유리가 태양전지 성능에 미치는 영향)

  • Choi, Young-Jin;Wang, Jin-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1421-1423
    • /
    • 1996
  • In this study, the effect of solar cell cover glass on the solar cell performance is evaluated. Silicon solar cell (active area:4*6cm, efficiency:12.6% at AMO condition) is used for this study. ITO(Indium tin Oxide) film thickness of the ITO/AR/substrate glass/solar cell structure samples are $40{\AA}$, $60{\AA}$, $160{\AA}$, $240{\AA}$ respectively. The solar cell maximum output power on the stacking structure variations showed 465mW in the AR/ITO/substrate glass/solar cell, and minimum output power showed 403mW in the AR/substrate glass/solar cell. The maximum output power of the solar cell on the ITO thickness variations of the ITO/AR/substrate glass/solar cell showed 460mW at $40{\AA}$ then decrease output power as ITO thickness increase. For environment tests, all samples are exposed UV light in the vacuum chanber. The output power degradation of AR(UVR)/substrate glass/solar cell stacking structure is small compared with ITO/AR(UVR)/substrate glass/solar cell stacking structure.

  • PDF

Edge Isolation Effects on Silicon Solar Cells using a Laser Scribing Process (레이저 스크라이빙 공정을 이용한 실리콘 태양전지의 측면분리 효과)

  • Joo, Jae-Hong;Jung, Soon-Won;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.851-856
    • /
    • 2017
  • Research on the edge isolation process of typical polycrystalline silicon solar cells was carried out using laser scribing equipment. The voltage-current characteristics of the solar cell before and after laser scribing were analyzed using a solar simulator. Current density and efficiency increased as the fill factor of the solar cell remained constant after the laser scribing process. The efficiency of the solar cell can be increased in a short time by the edge isolation process performed via a laser scribing process. The polycrystalline silicon solar cell was made into a series electrode, and the efficiency of the solar cell increased because the width of the solar cell was narrowed and the active region was widened by the laser scribing process.

A Study On the Cooling Effect of the Floating Horizontal Solar Cell

  • Jae-hyuk Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 2023
  • In this study, we measured the power and temperature of the floating horizontal solar cell in a coastal lagoon and compared with those of ground solar cell and water platform solar cell. Because the bottom surface of the floating horizontal solar cell was contacting the water, cooling effect was expected stronger than other cells. As a result of the measurement, the power of floating horizontal cell was 11.7% higher than that of the ground cell and 15% higher than that of the water platform cell. During the measurement, it was observed that water waves were continuously flowed on the top surface of floating horizontal cell by the wind, and it could be assumed that the cooling effect occurred not only on the bottom surface of the cell but also on the top surface. In order to analyze the cooling effect and power increasing of the horizontal cell in the wave situation, we measured power and temperature of the cell while generating artificial waves in a laboratory equipped with Zenon lamp as a solar simulator. At the height of thewater surface, the power of the cell with waves was 3.7% higherthan without waves and temperature was 4.6℃ lower. At 1 cm and 2 cm below the watersurface, power of the cell with waves was decreased by 14% and 11% than without waves while temperature was same . At 3 cm below the water surface, there was no effect of waves.

Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process (나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술)

  • Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

A Study on the Parameter Estimation of Solar Cell Module (태양전지 모듈의 파라미터 추정에 관한 연구)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • It is necessary to measure the solar cell parameter fur understanding characteristic of solar cell and applying to many other fields. Since photovoltaic system consists of solar cell module, which are connected each other in series and parallel, it is not proper to apply a solar cell parameter to photovoltaic system. Therefore, to estimate the solar tell module and to solve the problem of the established algorithm is on demand. In this paper the authors have improved the accuracy of solar cell module Parameter estimation by compensating series and Parallel resistance, and developed a new parameter estimation algorithm, which can be applied to photovoltaic system without high cost measuring equipment. And the validity of proposed algorithm is verified by the simulation and experimentation.

Polymer Tandem Solar Cell Having $TiO_2$ Nanoparticle Interlayer

  • Chung, Won-Suk;Lee, Hyun-Jung;Lee, Won-Mok;Ko, Min-Jae;Park, Nam-Gyu;Ju, Byeong-Kwon;Kim, Kyung-Kon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1200-1203
    • /
    • 2009
  • A solution processed polymer tandem cell has been fabricated by using the organic layer coated crystalline $TiO_2$ nanoparticle inter layer. The highly dispersive OL-$TiO_2$ has several advantages in terms of excellent film forming property, crystallinity, optical transparency, and well defined chemical composition. The surface morphology of the $TiO_2$ thin film was found to play a crucial role in the performance of the polymer tandem cell. The stability of the tandem cell, utilizing dense $TiO_2$ nanoparticles inter layer, was superior to the stability of the single junction cell.

  • PDF

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • Kim, Jun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency (고효율 태양전지모듈의 성능측정 방법)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.