• Title/Summary/Keyword: Solar tracking performance

Search Result 130, Processing Time 0.031 seconds

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

A Computational Analysis on Candela Distribution Curves and Performance Prediction of a Fiber Optic Dish Daylighting System by Photopia (Photopia를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측)

  • Oh, Seung-Jin;Han, Hyun-Joo;Jeon, Young-Il;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.104-113
    • /
    • 2012
  • A set of candela distribution curves(CDCs) were generated for a fiber optic dish daylighting system by Photopia under clear sky conditions at different solar altitudes. The candela distribution curves were then exported to Radiance for photometric analysis of a windowless lecture room. Observations were made on the Radiance rendered illuminance images, which provided photo realistic scenes varying with solar altitudes. If no tracking error were assumed, the daylight collection efficiency of the system remained at a constant value of 68.4% during its operation. Higher the solar altitude angle, greater in photometric quantities were observed, which are represented by candela(cd) and total lumens(lm). In all cases considered, however, the angle of light distribution remained fixed reflecting the solar tracking feature of the system. The illuminance uniformity on the workplane lingered around 0.12, which is quite low. This is quite a contrast to its average value of 0.68 of the $2.7m^2$ area directly below the terminal device (diffuser) of the system. The maximum illuminance of 1,340lux was obtained at a solar altitude of 80 degrees.

MPPT Control and Architecture for PV Solar Panel with Sub-Module Integrated Converters

  • Abu Qahouq, Jaber A.;Jiang, Yuncong;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1281-1292
    • /
    • 2014
  • Photovoltaic (PV) solar systems with series-connected module integrated converters (MICs) are receiving increased attention because of their ability to create high output voltage while performing local maximum power point tracking (MPPT) control for individual solar panels, which is a solution for partial shading effects in PV systems at panel level. To eliminate the partial shading effects in PV system more effectively, sub-MICs are utilized at the cell level or grouped cell level within a PV solar panel. This study presents the results of a series-output-connection MPPT (SOC-MPPT) controller for sub-MIC architecture using a single sensor at the output and a single digital MPPT controller (sub-MIC SOC-MPPT controller and architecture). The sub-MIC SOC-MPPT controller and architecture are investigated based on boost type sub-MICs. Experimental results under steady-state and transient conditions are presented to verify the performance of the controller and the effectiveness of the architecture.

The State Estimator Design for Solar Lighting Controller (태양광 가로등 제어를 위한 상태추정기 설계)

  • Ma, Kang-Jin;Kim, Ji-Woong;Lhee, Chin-Gook;Kim, Hong-Gyu;Kim, Il-Song
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • The solar lighting system has been popular in these days. It is composed of solar panel, controller, and battery. The battery is charged during the day time, and discharged at the night time. The battery status should be carefully controlled in order to guarantee the safe operation. If there were measurement noise or system noise, the performance of controller could be degraded. In this paper, the state estimator design in the noisy environment is proposed. The proposed system shows the excellent tracking performance under in harsh conditions.

  • PDF

A Novel Voltage Control MPPT Algorithm using Variable Step Size based on P&O Method (가변 스텝 P&O 기반 전압제어 MPPT 알고리즘에 관한 연구)

  • Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • In this study, a variable step algorithm is proposed on the basis of the perturb and observe method. The proposed algorithm can follow the maximum power point (MPP) quickly when solar irradiance changes rapidly. The proposed technique uses the voltage change characteristic at the MPP when the environment changes because of insolation or temperature. The MPP is tracked through the voltage control using a variable step method. This method determines the sudden change of solar irradiance by setting the threshold value and operates in fast tracking mode to track the MPP rapidly. When the operation point reaches the MPP, the mode switches to the variable step mode to minimize the steady state error. In addition, the output disturbance is decreased through the optimization of the control method design. The performance of the proposed MPPT algorithm is verified through simulation and experiment.

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

Circular Fresnel POF(Plastic Optical Fiber) Daylighting System Performance Evaluation Study (원형 프레넬 집광형 POF 주광 조명시스템 성능 평가 연구)

  • Kang, Eun-Chul;Choi, Yong-Jun;Yoon, Kwang-Sik;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • CF(Circular Fresnel) POF(Plastic Optical Fiber) daylighting system is a beam daylighting system utilizing solar direct beam radiation. In this study, a CF POF daylighting system has been introduced, developed and applied to KIER test buildings. The CF POF daylighting system consists of three parts: light collector, light transmitter and light diffuser. The light collector includes a Circular Fresnel lens focusing solar direct illuminance by sun tracking. The light transmitter contains the POF cable which has light transmission loss of 4.5% per meter. The light diffuser has about 80% diffuser efficiency. This study aims to evaluate of POF daylighting system performance. At the results of a CFPOF system performance evaluation, the theoretical CFPOF system efficiency was 41.9% and the actual CFPOF system efficiency at the KIER test building was 37.5%. The difference was due partly to the connecting efficiency.

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

A Study on the Development of Hybrid Micro Power Sources for the IMT2000 (IMT2000을 위한 혼성마이크로 동력원 개발에 관한 연구)

  • Kim il-Song;Youn Myung-Joong;Kim Jung-Han;Ju Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2005
  • A study on the hybrid micro power source for the IMT2000 application has been presented. The hybrid micro power source is composed of solar cell, super-capacitor and battery. To compensate for the pulse loader of the IMT2000 application, the super-capacitor is connected through the lithium-lon battery to absorb the pulse discharge current. The solar cell provides the additional current to compensate for the depleted current and it is controlled to operate at the maximum power point voltage. A novel maximum power point tracking method is presented to operate at the pulse discharge load conditions and verified to have superior tracking performance through experiment. The controller design for the hybrid micro power source has been presented and verified through experiment.

Study on Solar Tracker Control Method using AC Motor and CdS Sensor (AC 모터 및 CdS 센서를 이용한 태양 추적 장치 제어 방법에 관한 연구)

  • Kim, Bo-Heon;Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.294-301
    • /
    • 2016
  • Recently, the solar tracker has been used to improve the efficiency of solar energy. Solar tracking technologies are classified into the sensor-based method, the program-based method, and the hybrid method. Solar trackers using an AC motor and CdS sensor are low in cost, but the precision of the positions is low, owing to the inertia of the motor and the scattering of sunlight. To compensate for the low precision, we implement a CdS sensor module and propose an AC motor control method using error value. To evaluate the performance of the solar tracker, we implemented a solar water heater. From the experimental results, the solar tracker can achieve ${\pm}2mm$ accuracy for sun, can satisfy ${\pm}15mm$ as a limited error value, and provides a 32% performance enhancement in KSB8202 criteria.