• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.023 seconds

The Improved Maximum Power Point Tracking Algorithm under varying of irradiance (일사량 변화를 고려한 개선된 MPPT 알고리즘)

  • Lee, Gwui-Han;Jung, Young-Seok;Lee, Youn-Seop;Cha, Han-Ju;KO, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • The MPPT(Maximum Power Point Tracking) techniques are employed in photovoltaic (PV) systems to maximize the PV array output power which depends on solar irradiance and temperature. The dynamic MPPT performance under varying irradiance conditions affects the impact on overall PV system performance. This paper presents the improved MPPT algorithm by the simulation comparison with other algorithms. The simulation models are made by the Matlab & Simulink. The result of simulation, the dynamic MPPT efficiency of proposed algorithm is higher than the other algorithms.

Current Status of KASI Solar Radio Observing System

  • Bong, Su-Chan;Hwangbo, Jung-Eun;Park, Sung-Hong;Park, Jongyeob;Park, Young Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2013
  • Korea Astnonomy and Space Science Institute (KASI) operates two solar radio observing facilities, the Korean station of the e-CALLISTO and the Korean Solar Radio Burst Locator (KSRBL). The e-CALLISTO station had suffered from tracking problem for past several years. Since 2011, KASI has developed a new tracking system, and recently the antenna has regained the its sun-tracking capability and full day-time coverage. The KSRBL also suffered from the control computer breakdown last year. After one year of operational gap, the KSRBL restored its normal daily observation. We also expanded the data server storage capacity, to store the full original data of 25 ms integration time and 0.25 MHz frequency resolution, amounting to about 80 GB per day.

  • PDF

A Study on The PV System with Solar Tracking (태양광추적장치를 이용한 태양광발전시스템의 연구)

  • Oh, M.B.;Kang, S.Y.;Na, J.D.;Kim, B.C.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.717-719
    • /
    • 2005
  • This paper summarizes the results of these efforts by of offering the PV generation system with solar tracking. The status of PV generation system with solar tracking components and interconnection and effects are summarized. Hence this paper duscusses only points that might be useful for application.

  • PDF

A Study on the Development of Two Axes Sun Tracking System for the Parabolic Dish Concentrator (Parabolic Dish형 태양열 집열기를 위한 2축 태양추적장치의 개발에 관한 연구)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.81-91
    • /
    • 1999
  • The work presented here is a design and development of sun tracking system for the parabolic dish concentrator. Parabolic dish concentrator is mounted on azimuth and elevation tracking mechanism, and controlled to track the sun with computed and measured sun positions. Sun tracking mechanism is composed of 1/30000 speed reducer(3 stages) and 400W AC servomotor for each axis. The nominal tracking speed of each axis is ${\pm}0.6^{\circ}/sec$ and the system has a driving range of $340^{\circ}$ in azimuth and of $135^{\circ}$ in elevation. Sun tracking control system consists of sun sensor, wind speed and direction measurement system, AC servomotor position control system and personal computer as a master controller. Sun sensor detects the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. Computer computes the sun position, sunrise and sunset times and controls the orientation of parabolic dish concentrator through the AC servomotor position control system. It also makes a decision of whether the system should follow the sun or not based on the information collected from sun sensor and wind speed and direction measurement system. The sun tracking system developed in this work is implemented for the experimental work and shows a good sun tracking performance.

  • PDF

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Technology of single-axis solar tracking system and power generation increase (단축식 태양광 추적장치의 설계와 발전량 증대기술)

  • LEE, Jae-Jin;Lee, Kyo-Beum;Jeong, Kyu-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.212-217
    • /
    • 2020
  • The PV power generation system is a comprehensive system that transmits the power generated through a PV panel to a grid connection and is composed of a solar panel, a structure, and an inverter grid connection system. One technology to increase the amount of power generated involves changing the incident angle of sunlight. This study examined the structure and control of a single-axis tracking PV system that increases the amount of power generated by changing the incident angle. The core content is a single-axis control system and technology configured to rotate the solar structure in the east-west direction around the north-south axis. A solar structure that follows the sun from sunrise to sunset in the east-west direction needs to secure structural stability and solar tracking control performance. A single-axis tracking system can generate up to 25% more power.

Analysis on Candela Distribution Curve of a Tracking Dish Concentrator and Daylighting Prediction using Lighting Programs (조명 소프트웨어를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측)

  • Oh, Seung-Jin;Han, Hyeon-Ju;Sin, Sang-Ung;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.457-462
    • /
    • 2012
  • Daylighting software is an important component to predict the performance of daylighting system in advance of a field demonstration study with installing them in buildings. PHOTOPIA is a powerful software to generate a candela distribution curve(CDC) of an active daylighting system like a tracking dish concentrator. With PHOTOPIA, a set of candela distribution curves was generated under clear sky conditions and different solar altitude angles. The candela distribution curves were then imported to RADIANCE for rendering and analysis on the daylighting performance of a tracking dish concentrator when it installed in a actual class room without windows. As a result, the daylight collection efficiency of the dish concentrator was 68.4% when we assumed that there was no tracking error. It was found that candela(cd) and total lumens(lm) increased with solar altitude rising, whereas the distribution angle was fixed. The illuminance uniformity on the work plane in the class room was relatively low, 0.12, while the illuminance uniformity on the area of $2.7m^2$ to which the light was illuminated was considerably high, 0.60. The maximum illuminance was 1,340lux with a solar altitude angle of 80 degrees.

  • PDF

Development of Optimal Control of Heliostat System Using Configuration Factor and Solar Tracking Device (형상계수와 태양추적장치를 이용한 헬리오스타트 제어 시스템 개발)

  • Lee, Dong Il;Jeon, Woo Jin;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1177-1183
    • /
    • 2012
  • This study aims to develop a system that maximizes the radiative heat transfer from the heliostat to the receiver by using the configuration factor and a solar tracking device. As the heat transfer from the heliostat to the receiver is delivered by solar radiation, the configuration factor commonly utilized for radiation is applied to control the heliostat. Tracking the sun and calculating its position are possible by using an illuminance sensor (CdS) and Simulink. By applying optimized algorithms programmed using Simulink that maximize the configuration factors among the heliostat, receiver, and sun in real time, the solar absorption efficiency of the receiver can be maximized. Simulations were performed on how to change the angle required to control the elevation and azimuthal angle of the heliostat during the daytime with respect to various distances.

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Development of Fuzzy Controller for High Performance Solar tracking of PV System (PV 시스템의 고효율 태양 추적을 위한 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.315-318
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy control order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF