• Title/Summary/Keyword: Solar tracking

Search Result 448, Processing Time 0.034 seconds

Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA (SPA에 의한 동적인 보트의 태양전지 효율 분석)

  • Han, Jong-Ho;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

A Hybrid Solar Tracking System using Weather Condition Estimates with a Vision Camera and GPS (날씨인식 결과를 이용한 GPS 와 비전센서기반 하이브리드 방식의 태양추적 시스템 개발)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.557-562
    • /
    • 2014
  • It is well known that solar tracking systems can increase the efficiency of exiting solar panels significantly. In this paper, a hybrid solar tracking system has been developed by using both astronomical estimates from a GPS and the image processing results of a camera vision system. A decision making process is also proposed to distinguish current weather conditions using camera images. Based on the decision making results, the proposed hybrid tracking system switches two tracking control methods. The one control method is based on astronomical estimates of the current solar position. And the other control method is based on the solar image processing result. The developed hybrid solar tracking system is implemented on an experimental platform and the performance of the developed control methods are verified.

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

The Development of the Solar Tracking System with High Accuracy by using LabVIEW (LabVIEW를 활용한 고정밀도 태양추적장치 개발)

  • Oh, Seung-Jin;Cho, Yil-Sik;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-36
    • /
    • 2009
  • There have been many solar tracking systems developed for the high accuracy in solar tracking. One of the key components of any motion control system is software. LabVIEW offers an ideal combination of flexibility, ease-of-use and well-integration with other I/O pieces for developing solar tracking system. Real-time solar positions which vary with GPS's data are used simultaneously to control the solar tracker by a chain of operating modes between the open and closed loops. This paper introduces a step by step procedure for the fabrication and performance assessment of a precision solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CRD sensors are applied for the solar tracking system which play a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this paper demonstrate the accuracy of the present system in solar tracking and utilization.

  • PDF

The Study on the Application of Accurate Solar Tracking Algorithm by using LabVIEW (태양정밀추적 알고리즘의 LabVIEW 적용 연구)

  • Oh, Seung-Jin;Kin, Young-Min;Lee, Yoon-Joon;Cho, Yil-Sik;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.121-125
    • /
    • 2009
  • There have been many developed systems for harnessing the solar energy such as solar water heaters, solar thermal power systems, PV systems, daylighting and solar hydrogen systems. all of them are capable of reducing $CO_2$ emission. However, the efficiency of those systems which work without a solar tracker is lower. This paper is a step by step procedure for fabrication and a performance test of a solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CdS sensors are introduced into the solar tracking system for playing a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this article provide the high accuracy of the present system in solar tracking and indicate a potential for energy savings.

  • PDF

Development of Tracking Solar Power Generation System using PSA Algorithm (PSA 알고리즘을 이용한 추적식 태양열 발전 시스템 개발)

  • Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1115-1116
    • /
    • 2011
  • This paper proposes tracking solar power generation system using position solar algorithm(PSA). The solar power generation is changed power according to solar position due to using solar energy. The solar tracking methods are the program method and sensor method. This paper proposes two-axis tracking solar power generation using program tracking method. The validity of proposed system in this paper is proved through analyzing temperature of solar collect, generating power and efficiency.

  • PDF

Heliostat Control System (Heliostat 제어시스템)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • Heliostat in the tower type solar thermal power plant is a mirror system tracking the sun's movement to collect the solar energy and it is the most important subsystem determining the efficiency of solar thermal power plant. Thus a good performance of it, which is mostly the accurate sun tracking performance under the various hazardous operating condition, is required. Heliostat control system is a system to manage the heliostat sun tracking movement and other operations. It also communicates with the master controller through the heliostat filed control system to receive and send the informations required to operate the heliostat as a part of the solar thermal power plant. This study presents a heliostat control system designed and developed for the 1MW solar thermal power plant. We first define the functionality of heliostat control system. Then sun tracking controller as well as the sun tracking algorithm satisfying the required functionality have been developed. We tested the developed heliostat control system and it showed a good performance in regulation of heliostat motion and communication.

Design of Sun Tracker System for Solar Power Generation (태양광 발전을 위한 태양추적시스템 설계)

  • An, Jun-Sik;Heo, Nam-Euk;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.