• Title/Summary/Keyword: Solar system

Search Result 4,082, Processing Time 0.028 seconds

Analysis and Control of Series$\cdot$Parallels Connection Characteristics for Virtual Implementation of 50[W] Solar Cell Module (50[W]급 태양전지의 가상 구현을 위한 모듈의 직$\cdot$병렬 연결 특성 해석 및 제어)

  • Han J. M.;Ryu T. G.;Gho J. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.53-57
    • /
    • 2002
  • The solar energy is purity and infinity. Solar power converter were used to convert the electrical energy from the solar arrays to a stable and reliable power source. So many countries research this solar energy system The photovoltaic system is construct many solar cell array. In this paper, new implementation solar system was showed buck converter that V-I curve produced. This system can be used to study the short-term and long-term performances of solar cell and efficiency. This system is a far more cost effective and reliable replacement for field and outdoor flight testing. Study of buck converter, analysis and control series or parallels connection characteristics of solar cell way.

  • PDF

Design and implementation of IoT based controllers and communication module interfaces for stand-alone solar system

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.129-135
    • /
    • 2019
  • This paper is part of research and development for stand-alone solar system without commercial power supply. It implements firmware of controller for operation of stand-alone solar system by applying IoT technology and also develops communication modules that allow multiple solar lamps to send and receive data through wireless network. The controller of the developed stand-alone solar system can effectively charge the power generated by the solar module, taking into account the battery's charge and discharge characteristics. It also has the advantage of attaching wireless communication modules to solar lamp posts to establish wireless communication networks without incurring communication costs. In addition, by establishing IoT gateway middleware platform for each installation site, it forms a foundation to operate multiple solar lamp posts into multiple clusters. And, it is expected that the data collected in each cluster will be used to enable configuration and control of operational information, thereby inducing convenience and efficiency of remote operation and management.

A Study on the Optimization of a Renewable Energy System in Fire Station Buildings (소방서건물의 신재생에너지시스템 최적화에 관한 연구)

  • Lee, Yong-Ho;Hong, Jun-Ho;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • This study set out to evaluate the economy, environmentality, and complexity (economy+environmentality) of fire station buildings of public service facilities and propose ways to apply the optimization of renewable energy system to fire station buildings. As for economy according to life cycle costs, economy increased when the application percentage of the geothermal and solar heat system increased over the three renewable energy system types (geothermal, solar heat, and solar photovoltaic). On the other hand, economy decreased when the application percentage of the solar photovoltaic system increased. As for environmentality according to tons of carbon dioxide, environmentality decreased when the application percentage of the geothermal and solar heat system increased. Environmentality increased when the application percentage of the solar photovoltaic system increased. As for complexity (economy+environmentality) according to the weighted coefficient method, complexity increased when the application percentage of the geothermal system increased. It was highest at the combination of the solar heat system (20%) and geothermal system (80%). On the other hand, complexity decreased when the application percentage of the solar photovoltaic system increased. It was lowest at the combination of the solar photovoltaic system (80%) and geothermal system (20%).

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.

The Study of Thermal Performance on Solar Window (다기능 솔라윈도우의 열성능 연구)

  • Cho, YilSik;Kim, Janghoi;Yang, Yoonsub;Kim, ByoungSoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF

A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System (Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.

Thermal performance of solar cooling and hot water for the demonstration system (태양열 실증 시스템의 냉방 및 급탕 일일 열성능)

  • Lee, Ho;Kim, Sang-Jin;Joo, Hong-Jin;Kwak, Hee-Youl
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

Best Practices Research Use of Solar Energy For Low Carbon Green City (저탄소 녹색도시를 위한 태양에너지 이용 선진사례 조사)

  • Kim, Ji-Su;Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.37-42
    • /
    • 2009
  • We are in search for many method at 21th century thinking about the environment internationally. One is among them low carbon green city. Consequently this dissertation put a system solar energy key point of low carbon green city and purpose of low carbon green city Besides system and technique about the solar energy best practices try to do the investigation analysis. It's important of low carbon green city's environmental friendly system such as solar heat system, solar power generation, ecological greening, All these systems are connected each other and organize low carbon green city. A solar energy system uses pure energy of the situation directly most among the environmental friendly system. Energy saving and environment-friendly city in the world must do not a choice. However, recognition conversion and infrastructure of the Korea still has not come true. But South Korea and the international best practices is not the same system. But plan to solar city, the concept of green city in Cheongju, Deagu local government. And many meetings are in progress.

  • PDF

Thermal Performance of Solar Cooling & Hot-water System According to Control Condition (태양열 냉방 및 급탕 시스템의 제어 조건에 따른 열성능)

  • Lee, Ho;Joo, Hong-Jin;Kim, Sang-Jin;Kwak, Hee-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.214-219
    • /
    • 2008
  • This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.

  • PDF

Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system (태양열 시설원예 난방시스템의 장기성능 특성 분석 연구)

  • Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.