• Title/Summary/Keyword: Solar radiation rate

Search Result 200, Processing Time 0.019 seconds

A Basic Study on Urban Radiation Heat Transfer (도시의 방사전열에 관한 기초 연구)

  • Kim, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

Relationship between Atmospheric Transmissivity and Air Pollution in Korea (우리나라의 대기투과율과 대기오염과의 관계)

  • Lee, Hyup-Hee;Kim, Young-Seop;Han, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.52-52
    • /
    • 1995
  • The temporal and spatial distribution of atmospheric transmissivity and depletion rate of solar radiation are investigated, and are compared to the concentration of several components of air pollution. The length of the data span is 11 years from 1983 to 1993. The data of radiation and sunshine rate recorded at 20 meteorological standard stations were used, and in order to investigate a relationship between the depletion rate of solar radiation and air pollution, the concentration data of air pollution observed in Seoul, Pusan, Taegu, Taejon and Kwangju were compiled from 1991 to 1993. Regression coefficient a and b vary from 0.100 to 0.209, from 0.464 to 0.691, and their means are 0.163 and 0.533, respectively. Climatological atmospheric transmissivity is ranged from 0.68 to 0.83, and its mean is 0.75. Atmospheric transmissivity is relatively low in Pusan, Taejon, Kwangju and Inchon which have large population and are highly industrialized. However, that in Chinju, Mokpo, Cheju and Sosan appears to be large compared to the aforementioned stations. Insolation rate of clear days varies from 0.71 to 0.58, and its mean is 0.63. Insolation rate of Kangnung and Chinju are higher than those of Seoul and Pusan by 5%. From the correlation coefficients between depletion rate of solar radiation and air pollution concentration, the most significant factors related to the depletion rate of solar radiation is appeared to be TSP followed by $SO_2$. Ozone shows a negative correlation, End $NO_2$ does not show a obvious correlation with the depletion rate of solar radiation.

Relationship between Atmospheric Transmissivity and Air Pollution in Korea (우리나라의 대기투과율과 대기오염과의 관계)

  • Lee, Hyup-Hee;Kim, Young-Seop;Han, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.437-446
    • /
    • 1995
  • The temporal and spatial distribution of atmospheric transmissivity and depletion rate of solar radiation are investigated, and are compared to the concentration of several components of air pollution. The length of the data span is 11 years from 1983 to 1993. The data of radiation and sunshine rate recorded at 20 meteorological standard stations were used, and in order to investigate a relationship between the depletion rate of solar radiation and air pollution, the concentration data of air pollution observed in Seoul, Pusan, Taegu, Taejon and Kwangju were compiled from 1991 to 1993. Regression coefficient a and b vary from 0.100 to 0.209, from 0.464 to 0.691, and their means are 0.163 and 0.533, respectively. Climatological atmospheric transmissivity is ranged from 0.68 to 0.83, and its mean is 0.75. Atmospheric transmissivity is relatively low in Pusan, Taejon, Kwangju and Inchon which have large population and are highly industrialized. However, that in Chinju, Mokpo, Cheju and Sosan appears to be large compared to the aforementioned stations. Insolation rate of clear days varies from 0.71 to 0.58, and its mean is 0.63. Insolation rate of Kangnung and Chinju are higher than those of Seoul and Pusan by 5%. From the correlation coefficients between depletion rate of solar radiation and air pollution concentration, the most significant factors related to the depletion rate of solar radiation is appeared to be TSP followed by $SO_2$. Ozone shows a negative correlation, End $NO_2$ does not show a obvious correlation with the depletion rate of solar radiation.

  • PDF

Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

  • Yang, Woon-Ho;Park, Tae-Shik;Kwak, Kang-Su;Choi, Kyung-Jin;Oh, Min-Hyuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.112-121
    • /
    • 2007
  • Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate. Grain filling rate and duration exhibited highly significant variations in the ranges of $20.7{\sim}46.3\;g\;m^{-2}d^{-1}\;and\;11.2{\sim}35.5$ days, respectively, depending on rice genotypes. Grain yield on unit area basis was associated positively with grain filling duration but negatively with grain filling rate. Grain filling rate and duration were negatively correlated with each other. Final grain weight increased linearly with the rise in both cumulative mean temperature and cumulative solar radiation for effective grain filling. Higher cumulative mean temperature and cumulative solar radiation for effective grain filling were the results of longer grain filling duration, but not necessarily higher daily mean temperature and daily solar radiation for effective grain filling. Grain filling rate demonstrated an increasing tendency with the rise in daily mean temperature for effective grain filling but their relationship was not obviously clear. It was concluded that grain filling duration, which influenced cumulative mean temperature and cumulative solar radiation for effective grain filling, was the main factor that determined grain yield on unit area basis in temperate Japonica rice.

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju (제주 실시간 일사량의 기계학습 예측 기법 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Jeong-keun
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Absorbing Rate of Solar Irradiation on Glass Evacuated Tube Collectors Depending on the Absorbing Tube Shape (진공관형 태양열 집열기의 집열관 형상에 따른 태양 복사 에너지 흡수량의 변화)

  • Seo, Tae-Beom;Kang, Hee-Dong;Kim, Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.35-44
    • /
    • 2005
  • The absorbing rate of solar irradiation on the surface of an absorbing tube in a glass evacuated solar collector is numerically investigated. Four different shapes of the absorbing tubes are considered, and the absorbed solar irradiation on the surface is calculated for several distances between the absorbing tubes and the incidence angle of solar beam radiation. From the calculation, it is known that the absorbing rate of solar irradiation on the tube surfaces depends upon the shape and the arrangement of absorbing tube and the incidence angle.

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

The Prediction of Energy Consumption by Window Inclination (창의 기울기에 따른 건축물 에너지 소비량 예측)

  • Cho, Sung-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Most of domestic building generally don't have fixed shading devices considering of appearance and aesthetic issues. In this study is suggested that tilt window simultaneously has a role of shading and blocking solar radiation. The tilt window thermal performance is investigated by relation ship between inclination and heating cooling road. As comparing vertical window with $5^{\circ}$ and $7^{\circ}$ of tilt window respectively, the heating load is increased by 3.6% and cooling load is reduced by 8.1% on $5^{\circ}$ tilt window and the heating load is increased by 5.3% and cooling load is reduced by 11.5% on $5^{\circ}$ tilt window. Especially, the total load of alternative tilt window is showed the reduction rate 2.6% and3.6% compared of vertical window. Therefore, the tilt window is possible to role of shading of solar radiation and reduction of heating and cooling load.