• 제목/요약/키워드: Solar radiation prediction

검색결과 141건 처리시간 0.04초

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측 (Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image)

  • 김재정;유용훈;김창복
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.569-575
    • /
    • 2021
  • 딥러닝은 데이터의 품질과 모델에 따라 예측 성능에 차이를 보인다. 본 연구는 발전량 예측에 가장 영향을 주는 일사량 예측을 위한 최적의 딥러닝 모델을 구축하기 위해 다양한 입력 데이터와 다중 딥러닝 모델을 사용하였다. 입력 데이터는 기상청의 기상 데이터와 천리안 기상영상을 기상청 지역의 영상을 분할하여 사용하였다, 본 연구는 기본적인 딥러닝 모델인 DNN, LSTM, CNN 모델에 대해 중간층의 깊이와 노드를 변경하여 일사량을 예측하여, 비교 평가하였다, 또한, 각 모델에서 가장 좋은 오차율을 가진 모델을 연결한 다증 딥러닝 모델을 구축하여 일사량을 예측하였다. 실험 결과로서 다중 딥러닝 모델인 모델 A의 RMSE는 0.0637이며, 모델 B의 RMSE는 0.07062이며, 모델 C의 RMSE는 0.06052로서 단일 모델보다 모델 A 그리고 모델 C의 오차율이 좋았다. 본 연구는 실험을 통해 두 개 이상의 모델을 연결한 모델이 향상된 예측률과 안정된 학습 결과를 보였다.

우리나라 지역별 청명도 예측 모델을 이용한 월평균 수평면 일사량 산출 (Generation of monthly averaged horizontal Radiation based on a regional clearness estimating model)

  • 김진효;김민휘;권오현;석윤진;정재원
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.72-80
    • /
    • 2010
  • The main thrust of this paper is to investigate a practical way of generating the monthly averaged daily horizontal solar radiation in Korea. For estimating the horizontal solar radiation, the clearness index($K_T$) and the clearness number($C_N$) which are required for the use of Liu and Jordan's model and ASHRAE Clear Sky model were derived based on the measured weather data. Third-order polynomials returning $K_T$ and��$C_N$ for a given location were derived as a function of cloud amount, month, date, latitude and longitude. The predicted monthly averaged daily horizontal solar radiation values were compared with those acquired from the established design weather data. The MBE(Mean Bias Error) and RMSE (Root Mean Squares for Error) between the predicted values and the measured data were near zero. It means that the suggested third-order polynomials for $K_T$ and $C_N$ have good applicability to Liu and Jordan's model and ASHRAE Clear Sky model.

Recent International Activity of KASI for Space Weather Research

  • 조경석;박영득;이재진;봉수찬;김연한;황정아;최성환
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

대류.복사 연성시뮬레이션을 통한 옥외 온열환경 평가 기법 (Study on assessment of outdoor thermal environment with coupled simulation of convection and radiation)

  • 류민경;임종연;황효근;송두삼
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.565-572
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas such as heat island has become worse due to urbanization and overpopulation, etc. In this study, a new method which is coupled simulation of convection and radiation to evaluate outdoor thermal environment in urban area will be proposed. Because the solar radiation affects on outdoor thermal environment massively, therefore the radiation calculation is very important in outdoor thermal environment prediction. The coupled simulation proposed in this study can assess the outdoor thermal environment with accurate.

  • PDF

태양열 온수 및 난방 일체형 복합시스템의 성능예측 (Performance Prediction of a Hot Water Supply and Panel Heating System with Solar Energy)

  • 한유리;박윤철
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a simulation program was developed with heat transfer model in the thermal storage tank for a solar collector and burner combined heating and hot water supply system. Analysis was conducted with variation of operating condition and schedule to analyze performance of a hot water supply and panel heating system with a solar collector and burner combined thermal storage tank. The simulation program is divided two sections. One part is calculation of temperature variation of water which flows through the panel in the floor for heating of the residential house during 24 hours, and the other part is heat transfer calculation for the reaction time to get desired water temperature in the thermal storage tank. As results, light oil consumption and system performance during operation period were analyzed with variation of climate condition and with or without solar collector. Most of the case, oil could be saved about from 24 to 41% with installing the solar collector. The performance of the system is more dependent on radiation time of the solar collector rather than the intensity of the solar radiation which was adopted for the climate analysis.

기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구 (On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area)

  • 정영진;이동인
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

태양광 발전을 위한 발전량 예측 모델 분석 (Analysis of prediction model for solar power generation)

  • 송재주;정윤수;이상호
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.243-248
    • /
    • 2014
  • 최근 태양광에너지는 실시간 태양의 위치를 추적하여 모듈경사각과 이루는 갓을 산정하여 일사량을 보정하는 부분에서 컴퓨팅과의 결합이 확대되고 있다. 태양광 발전은 태양의 위치에 따라 출력변동이 심하고 출력 예측이 어려워 효율적인 전력 생산을 위해서 신재생에너지를 전력계통에 안정적으로 연계할 수 있는 기술이 필요하다. 본 논문에서는 실증단지 내 발전단지의 실시간 기상자료 예측값을 이용하여 최종적으로 태양광 발전량 예측값을 산정하는 태양광 발전을 위한 발전량 예측 모델을 분석한다. 태양광 발전량은 태양광 발전기별 모듈특성, 온도 등을 감안하여 보정계수를 입력하고 예측 지역의 위치 경사각을 분석하여 발전량 예측 계산 알고리즘을 통해 최종 발전량을 예측한다. 또한, 제안 모델에서는 실시간 기상청 관측자료와 실시간 중기 예측 자료를 입력 자료로 사용하여 단기 예측 모델을 수행한다.

가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법 (Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation)

  • 유승수;이정혁;한진희;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.

중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구 (A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions)

  • 길태준;최준혁;조용진;김태국
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.