• Title/Summary/Keyword: Solar radiation increase

Search Result 189, Processing Time 0.033 seconds

Power Generating Performance of Photovoltaic Power System for Greenhouse Equipment Operation (온실설비 작동용 태양광발전시스템의 발전 성능 분석)

  • Yoon, Yong-Cheol;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Suh, Won-Myung
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.177-184
    • /
    • 2009
  • For the purpose of reducing the cost for greenhouse operation by acquiring the electric power necessary for it, this study installed a solar photovoltaic system on the roof of the building adjacent to green-houses and experimentally examined the quantity of power generation based on weather conditions. The results of the study are as per the below: The maximum, average and minimum temperature while the experiment was conducted was $0.4{\sim}34.1,\;-6.1{\sim}22.2$, and $-14.1{\sim}16.7^{\circ}C$ respectively, and the solar radiation was $28.8MJ{\cdot}m^{-2}$ (maximum), $14.9MJ{\cdot}m^{-2}$ (average), and $0.6MJ{\cdot}m^{-2}$ (minimum). The quantity of electric power didn't increase in proportion to the quantity of solar radiation and instead, it was almost consistent around 750W. Daily maximum, average and minimum consumption of electric power was 5.2kWh, 2.5kWh and 0kWh respectively. Based on the average electric power consumption of the system used for this experiment, it was sufficient in case the capacity and the working time of a hot blast heater are small, but it was short in case they are big. In case the capacity of the hot blast heater is big, the average electric power quantity will be sufficient for array area $21m^2$, about three times of the present area. In summer when the temperature of the array becomes high, the generation of electric power didn't increase in proportion to the quantity of solar radiation, but this experiment result shows a high correlation between two factors (coefficient of correlation 0.84).

Energy Performance Variation of Solar Water Heating System by LCC Optimization in an Office Building (사무소 건물 태양열급탕시스템의 LCC 최적화에 따른 에너지성능 변화 분석)

  • Ko, Myeong-Jin;Choi, Doo-Sung;Chang, Jae-Dong;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • This study examined the energy performance according to the main design parameters of a solar water heating system for an office building using the life cycle cost (LCC) optimization simulations. The LCC optimization simulations of the system were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the global radiation incident on the collector could be decreased by 16.98% and 28.52%, collector useful energy gain could be decreased by 15.04% and 22.59%, energy to load from storage tank could be decreased by 10.86% and 18.06% and AH energy to load could be increased by 16.86% and 38.50% respectively compared to a non-optimized system. The annual average collection efficiency of the collector was increased by 0.88% for $60^{\circ}C$ and 2.78% for $50^{\circ}C$ because of increase of collector slope and decrease of the mass flow rate per collector area. The annual average efficiency of the system was increased by 1.74% and 3.47% compared to the basis system. However, the annual solar fraction of the system was decreased by 6.68% for $60^{\circ}C$ and 11.26% for $50^{\circ}C$ due to decrease of collector area and storage tank volume.

Regional Division According to the Annual Change of Sunshine Duration in Korea (일조시간의 연변화에 따른 한국의 지역구분)

  • 문영수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.253-263
    • /
    • 1996
  • This study is an attempt to classify climatic regions of Korea based on the data of sunshine duration and to clarify the characteristics of sunshine for each divided regions. The data used in this study are the mean values of monthly and ten-daily sunshine duration, sunshine percentage, solar radiation and proud amount obtained from 63 weather stations of the Korea Meteorological Administration during the period of 1974~ 1993. The characteristics of annual change of sunshine percentage, annual duration of sunshine, percentage of sunshine, annual radiation, amount of cloud, days of sunshine percentage above 80% and-days of sunless are investigated by the mean values of -the stations belong to divided regions. The ward method of hierarchical cluster analysis is adopted to the analysis of data for the regional division. The results obtained in this study are summarized as follows. (1) The sunshine regions of Korea can be divided into six regions of the central west, central east, south west, souls east, Ullung-do and Cheju-do. These are strongly affected by the dirtribution of inclined slopes taking account of the topographic characteristics of Korea. (2) Annual distribution shows the sunshine duration of 1777~ 2287 hours, sunshine percentage of 40~53%, solar radiation of 3469~4637 MJ/$m^2$, cloud amount of 5.0~6.1, days of sunshine perrentage above 80% of 53~116days and sunless days of 46~71days. (3) The types of annual change of sunshine percentages is classified with four types of minimum in July and maximum in October, minimum in July and maximum in December, high in May and October and low in July and January, high in May and November and low in June and January. (4) The long-term trend of sunshine duration decrease in peninsula area but increase in island area and the Tong-term inclination of cloud amount is almost zero. The author believe this tendency is related to a pollutional turbidity than a cloud amount in inland area.

  • PDF

Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector (태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -)

  • Song, Hyun Kap;Yon, Kwang Seok;Cho, Sung Chan
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF

Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units (환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.

Interpretation on the Epidemic Outbreak of Rice Blast Disease in Korea, 1978. (1978년도 도열병 대발생의 요인분석)

  • Eun-Woong Lee;Sun-Zik Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1979
  • In order to investigate the causes of epidemic out break of rice blast disease in 1978, investigations were undertaken in respect of climatic conditions, variety, cultural practice and plant pathology. During 1978, especially in August at heading time, it was higher temperature and humidity, higher frequency and amount of rainfall, lower amount of sunshine and solar radiation than less blast infested years. Nitrogen content in rice plant was higher than previous years. Acreage increase of semi-dwarf varieties brought about a result of proportional increase of new blast races which are able to infect the semi-dwarf varieties. It was concluded that those conditions mentioned above might have caused the result of severe neck blast disease in rice varieties in Korea, 1978.

  • PDF

A Study on the Reduction effect of Peak Cooling Load on the Sunshade effect of BIPV System (BIPV 시스템의 차양 효과에 따른 피크 냉방부하 절감효과에 관한 연구)

  • Lee, Chung-Sik;Lee, Eung-Jik;Lee, Chul-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.14-20
    • /
    • 2008
  • As the number of buildings that use the transparent permeation materials as the outer wall is on the increase, the coming amount of the light rays is a lot, and thus the increase in the cooling load and the radiant heat of high temperature may cause the residents to discomfort. In order to reduce such influences, this paper analyzed the installation effects of the sunshade BIPV. The inner temperature of the room installed the sunshade BIPV or otherwise was measured, and compared and analyzed the effects of reducing the cooling load by the incoming light rays. The sample space of the third floor of S university installed the sunshade BIPV has two rooms on the same conditions, and for five sunny days selected in August, the researcher measured the air temperature and the temperature of the fittings with closing the windows to minimize the movement of air without operating the coolers. The maximum cooling load measured by the incoming light rays in the room where the sunshade BIPV was not installed was examined as 459.13kcal/h. It can be understood as the effect of reducing the cooling load according to the incoming rays of the room with sunshade BIPV. Even though the effect of cooling load reduction is not so great in a room, the total reduction in cooling room for the 32 rooms installed the sunshade BIPV was estimated to be 40442.27kcal/day, which will be able to bring the maximum reduction effect of 17.1kW in energy and reduce the investment cost owing to the reduction in cooling load when initially designing the building.

Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

  • Hwang, Junga;Dokgo, Kyunghwan;Choi, Enjin;Park, Jong-Sun;Kim, Kyung-Chan;Kim, Hang-Pyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O'Neill 2010.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Effects of Changes of Climate, Groundwater Withdrawal, and Landuse on Total Flow During Dry Period (기후, 지하수 취수 및 토지이용 변화의 건기 총유출량에 대한 영향)

  • Lee, Kil-Seong;Chung, Eun-Sung;Shin, Mun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.923-934
    • /
    • 2006
  • In this study, the effects of variability in climate, groundwater withdrawal, and landuse on dry-weather streamflows were investigated by input sensitivity analysis using SWAT (Soil and Water Assessment Tool). Since only dry-period precipitation and daily average solar radiation among climate variables have high correlation coefficients to total flow (TF), sensitivity analyses of those were conducted. Furthermore, an equation was derived from simulation results for 30 years by multiple regression analysis. It may be used to estimate effects of various climatic variations (precipitation during the dry period, precipitation during the previous wet period, solar radiation, and maximum temperature). If daily average maximum temperatures increase, TFs during the dry period will decrease. Sensitivities of groundwater withdrawal and landuse were also conducted. Similarly, groundwater withdrawals strongly affect streamflow during the dry period. However, landuse changes (increasing urbanization) within the forested watershed do not appear to significantly affect TF during the dry period. Finally, a combined equation was derived that describes the relationship between the total runoff during the dry period and the climate, groundwater withdrawal and urban area proportion. The proposed equation will be useful to predict the water availability during the dry period in the future since it is dependent upon changes of temperature, precipitation, solar radiation, urban area ratio, and groundwater withdrawal.