• 제목/요약/키워드: Solar panels

검색결과 197건 처리시간 0.025초

Test and simulation of High-Tc superconducting power charging system for solar energy application

  • Jeon, Haeryong;Park, Young Gun;Lee, Jeyull;Yoon, Yong Soo;Chung, Yoon Do;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.18-22
    • /
    • 2015
  • This paper deals with high-Tc superconducting (HTS) power charging system with GdBCO magnet, photo-voltaic (PV) controller, and solar panels to charge solar energy. When combining the HTS magnet and the solar energy charging system, additional power source is not required therefore it is possible to obtain high power efficiency. Since there is no resistance in superconducting magnet carrying DC transport current the energy losses caused by joule heating can be reduced. In this paper, the charging characteristics of HTS power charging system was simulated by using PSIM. The charging current of HTS superconducting power charging system is measured and compared with the simulation results. Using the simulation of HTS power charging system, it can be applied to the solar energy applications.

태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가 (Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype)

  • 이경화;김금화
    • 패션비즈니스
    • /
    • 제19권4호
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성 (Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer)

  • 이윤주;권오규;선주형;장근용;최준철;권우택
    • 자원리싸이클링
    • /
    • 제31권5호
    • /
    • pp.52-58
    • /
    • 2022
  • 태양광 폐실리콘 웨이퍼에서 회수한 실리콘과 카본블랙을 활용하여 탄화규소 분말을 제조하였다. 태양광 발전시장에서 결정질 실리콘 모듈이 90% 이상을 차지한다. 태양광 모듈의 사용기한이 도래함에 따라 환경과 경제적인 측면에서 실리콘을 회수하고 활용하는 기술은 매우 중요하다. 본 연구에서는 태양광 폐패널에서 회수한 실리콘을 탄화규소 원료로 활용하기 위하여, 순도 95.74% 폐실리콘 웨이퍼로부터 정제과정을 거쳐 99.99% 실리콘 분말을 회수하였다. 탄화규소 분말 합성특성을 살펴보기 위하여, 정제된 99.99% 실리콘 분말과 탄소분말을 혼합한 후, Ar 분위기에서 열처리(1,300℃, 1,400℃, 1,500℃)과정을 수행하였다. 실리콘과 탄화규소 분말의 특성을 입도분포, XRD, SEM, ICP, FT-IR 및 Raman 분석기를 사용하여 분석하였다.

MPPT Control and Architecture for PV Solar Panel with Sub-Module Integrated Converters

  • Abu Qahouq, Jaber A.;Jiang, Yuncong;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1281-1292
    • /
    • 2014
  • Photovoltaic (PV) solar systems with series-connected module integrated converters (MICs) are receiving increased attention because of their ability to create high output voltage while performing local maximum power point tracking (MPPT) control for individual solar panels, which is a solution for partial shading effects in PV systems at panel level. To eliminate the partial shading effects in PV system more effectively, sub-MICs are utilized at the cell level or grouped cell level within a PV solar panel. This study presents the results of a series-output-connection MPPT (SOC-MPPT) controller for sub-MIC architecture using a single sensor at the output and a single digital MPPT controller (sub-MIC SOC-MPPT controller and architecture). The sub-MIC SOC-MPPT controller and architecture are investigated based on boost type sub-MICs. Experimental results under steady-state and transient conditions are presented to verify the performance of the controller and the effectiveness of the architecture.

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • 적정기술학회지
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.

소형위성용 태양전지 개발 동향 및 발전 방향 (Development trends of Solar cell technologies for Small satellite)

  • 최준희
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.310-316
    • /
    • 2021
  • 기존의 인공위성은 다기능·높은 성능을 가진 대형위성을 국가 단위에서 운용하는 것이 일반적이었으나 최근의 전기·전자 및 광학 기술의 경량 소형화 발전에 따라 점차 소형위성이 주목받고 있다. 크기와 무게가 감소됨에 따라 적은 비용으로 개발 및 발사가 가능하여 위성 개발에 진입장벽이 낮아지고 있으나, 인공위성의 전력공급에 필수적인 태양전지 패널의 경우 태양광에 효율적으로 노출되기 위해 넓은 표면적이 필요하여 소형화 및 경량화가 제한적이다. 우주용 태양전지는 우주선과 태양열, 온도와 같은 다양한 우주환경을 고려하여 제작되어야하고, 부피를 최적화하기 위해 전개 매커니즘을 적용하며 경량화 및 고효율화를 위하여 태양전지 셀의 구조적 재료적인 연구개발이 필요하다. 현재 태양전지 패널로 개발되어 운용되고 있는 제품들은 고효율화를 위하여 주로 InGaP/GaAs/Ge 소재의 3중구조를 적용하고 있다. 최근에는 초고효율 다층구조 태양전지를 위하여 4중접합 이상의 구조가 연구되고 있으며, 나아가 소재적으로 경량화에 유리한 유연박막 태양전지, 유기 및 유무기 하이브리드 태양전지 등이 차세대 소형위성용 태양전지로 주목받고 있다.

입지 및 설치방식에 따른 태양광 발전량 분석 방법에 관한 연구 (An analysis methodology for the power generation of a solar power plant considering weather, location, and installation conditions)

  • 허병노;이재현
    • 한국산업정보학회논문지
    • /
    • 제28권6호
    • /
    • pp.91-98
    • /
    • 2023
  • 태양광 발전소의 발전량은 기상 조건, 지리적 조건, 태양광 패널 설치 조건과 높은 상관관계를 갖는다. 과거 연구들에서는 발전량에 영향을 미치는 요소를 찾아내었고, 그 중 일부는 태양광 패널이 최대 전력량을 생산할 수 있는 최적의 조건을 찾았었다. 하지만, 태양광발전소 설치 시 현실적 제약을 고려하면 최대 발전량 조건을 만족시키기는 매우 어렵다. 발전소 소유자가 태양광발전소 설치를 검토할 때 태양광 발전량을 예측하기 위해서는 발전량에 영향을 미치는 요인들의 민감도를 알아야 한다. 본 논문에서는 태양광발전소의 발전량과 날씨, 위치, 설치 조건 등 관련 요인들과의 관계를 분석하기 위한 다항회귀분석 방법을 제안한다. 분석자료는 대구, 경북에 설치·운영되는 태양광발전소 11개소로부터 수집하였다. 분석 결과 발전량은 패널 종류, 일사량, 음영 유무에 영향을 받으며 패널 설치 각도와 방향이 복합적인 영향을 주는 것으로 나타났다.

Energy self-sufficiency of office buildings in four Asian cities

  • Kim, Jong-Jin
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.11-20
    • /
    • 2014
  • This paper examines the climatic and technical feasibilities of zero energy buildings in Seoul, Shanghai, Singapore and Riyadh. Annual and seasonal energy demands of office buildings of various scales in the above cities were compared. Using optimally tilted rooftop PV panels, solar energy production potentials of the buildings were estimated. Based on the estimates of onsite renewable energy production and building energy consumption, the energy self-sufficiencies of the test buildings were assessed. The economic feasibilities of the PV systems in the four locations were analyzed. Strategies for achieving zero energy buildings are suggested.

태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구 (Study on Theoretical Research to Reduce Fire Risk of Solar Power System)

  • 박경진;이근출;이봉우
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.