• Title/Summary/Keyword: Solar magnetic field

Search Result 249, Processing Time 0.026 seconds

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Fast Dimming Associated with a Coronal Jet Seen in Multi-Wavelength and Stereoscopic Observations

  • Lee, K.S.;Innes, D.E.;Moon, Y.J.;Shibata, K.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2012
  • We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and the SDO/Atmospheric Imaging Assembly (AIA), Helioseismic and Magnetic Imager (HMI), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption in Ca II images of the SOT before the jet eruption. Using high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period. According to the spectroscopic analysis, the jet's emission changed from blue to red shift with time, implying helical motions in the jet. The STEREO observation, which enabled us to observe the jet projected against the disk, showed that there was a dim loop associated with the jet. We have measured a propagation speed of ~800 km/s for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the HMI photospheric field measured 5 days earlier and the loop densities obtained from EIS Fe XIV line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  • PDF

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon;Lee, Jeongwoo;Yi, Yu;Ssessanga, Nicholas;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

STUDY OF FLARE-ASSOCIATED X-RAY PLASMA EJECTIONS : II. MORPHOLOGICAL CLASSIFICATION

  • KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.171-177
    • /
    • 2004
  • X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.

PROPAGATION OF SUDDEN IMPULSES IN A DIPOLAR MAGNETOSPHERE

  • LEE DONG-HUN;SUNG SUK-KYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.101-107
    • /
    • 2003
  • The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.

Heliospheric Current Sheet Probe

  • Yu, Yi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • Space explorations by spacecraft have detected the solar wind and the interplanetary magnetic field (IMF), whose existences had been suggested to explain the narrow comet plasma tail formation before the space age. Thereafter, a global magnetic structure seperating the opposite polarity regions of IMF in the heliosphere was discovered (Wilcox and Ness, 1965). It is called helispheric current sheet (HCS). Comets have been proved as the useful heliospheric probes. Recently, another capability of comet as a probe of HCS was suggested by Yi (1994). In the process of comet plasma tail disconnection events (EDs) showing the ray folding and main tail severance between the folding rays (Brandt, 1982), the folding rays preceding DE might be the visualization of HCS draped around comet, In order to test this new idea, the association of comet Halley 16 DEs with comet crossings of HCS confirmed by spacecraft observations at the time of comet Halley apparition 1985~1986 was investigated.

  • PDF

Short Periodicities in Latitudinal Variation of Sunspots

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • The latitudinal variation of sunspots appearing during the period from 1874 to 2009 has been studied in terms of centerof-latitude (COL). The butterfly diagram has been used to study the evolution of the magnetic field and the dynamics at the bottom of the solar convection zone. Short-term periodicities have been of particular interest, in that they are somehow related to the structure and dynamics of the solar interior. We thus have focused our investigation on shortterm periodicities. We first calculated COL by averaging the latitude of sunspots with the weight function in area. Then, we analyzed the time series of COL using the wavelet transform technique. We found that a periodicity of ~5 years is the most dominant feature in the time series of COL, with the exception of the ~11 year solar cycle itself. This periodicity can be easily understood by considering small humps between the minima in the area-weighted butterfly diagram. However, we find that periodicities of ~1.3 (0.064), ~1.5 (0.056), or ~1.8 (0.046) years ($\frac{1}{month}$), month ), which have been previously suggested as evidence of links between the changing structure of the sunspot zone and the tachocline rotation rate oscillations, are insignificant and inconsistent. We therefore conclude that the only existing short-term periodicity is of ~5 years, and that periodicities of ~1.3, ~1.5, or ~1.8 years are likely to be artifacts due to random noise of small sunspots.

Properties of plasmas associated with fluctuations in the upstream of Earth's bow shock

  • Lee, En-Sang;Lin, Naiguo;Parks, George;Kim, Khan-Hyuk;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.96.1-96.1
    • /
    • 2012
  • Various electromagnetic fluctuations are observed in the upstream of Earth's bow shock. Properties of plasmas are important in determining the development of the fluctuations. In this study we analyze the phase space distribution functions of plasmas measured by the Cluster spacecraft to understand how the fluctuations develop. Plasmas in the upstream of Earth's bow shock often consist of multiple components, especially when the fluctuations exist. In addition to the solar wind beams, backstreaming ion beams and diffuse ions are also often observed separately or simultaneously. The solar wind beams are not much perturbed even within the fluctuations. The diffuse ions are more than 10 times hotter than the solar wind beams and the backstreaming beams intermediate between them. The distribution functions of the diffuse and backstreaming ions are anisotropic to the magnetic field. Thus, they may be responsible for the fluctuations associated with temperature anisotropy. We will discuss about the thermalization processes and the relationship between the fluctuations and plasmas.

  • PDF

Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.159-167
    • /
    • 2014
  • Solar variability is widely known to affect the interplanetary space and in turn the Earth's electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, $B_X$, $B_Y$, $B_Z$. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1) Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2) The peaks in the power spectrum of $B_Z$ appear to be split due to an unknown agent. (3) For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4) Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth's space environment is not subject to the shadow of the inner planets as suggested earlier.

Observation of an Ellerman bomb and its associated surge with the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Yang, Heesu;Chae, Jongchul;Park, Hyungmin;Maurya, Ram Ajor;Cho, Kyuhyun;Kim, Yeon-Han;Cho, Il-Hyun;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.111.2-111.2
    • /
    • 2012
  • We observed an Ellerman bomb(EB) and its associated surge using the Fast Imaging Solar Spectrograph(FISS) and the broadband TiO filter of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. As is well-known, the EB appears as a feature that is very bright at the far wings of the H alpha line. The lambdameter method applied to these wings indicates that the EB is blue-shifted up to 6km/s in velocity. In the photospheric level below the EB, we see rapidly growing "granule-like" feature. The transverse velocity of the dark lane at the edge of the "granule" increased with time as reached a peak of 6km/s, at the time of the EB's occurrence. The surge was seen in absorption and varied rapidly both in the H alpha and the Ca II 8542 line. It originated from the Ellerman bomb, and was impulsively accelerated to 20km/s toward us(blueshift). Then the velocity of the surge gradually changed from blueshift of 20km/s to redshift of 40km/s. By adopting the cloud model, we estimated the temperature of the surge material at about 27000K and the non-thermal velocity at about 10km/s. Our results shed light on the conventional idea that an EB results from the magnetic reconnection of an emerging flux tube and pre-existing field line.

  • PDF