• 제목/요약/키워드: Solar magnetic field

검색결과 249건 처리시간 0.027초

Solar Interior Currents Presumed by Solar Surface Magnetic Fields

  • Bogyeong Kim;Yu Yi
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.187-194
    • /
    • 2023
  • The remote sensing technique of measuring the magnetic field was applied first to sunspots by Hale (1908). Later Babcock (1961) showed that the solar surface magnetic field on a global scale is a dipole in first-order approximation and that this dipole field reverses once every solar cycle. The Wilcox Solar Observatory (WSO) supplies the spherical harmonics coefficients of the solar corona magnetic field of each Carrington Rotation, calculated based on the remotely-sensed photospheric magnetic field of the solar surface. To infer the internal current system producing the global solar coronal magnetic field structure and evolution of the Sun, we calculate the multipole components of the solar magnetic field using the WSO data from 1976 to 2019. The prominent cycle components over the last 4 solar activity cycles are axis-symmetric fields of the dipole and octupole. This implies that the current inversion driving the solar magnetic field reversal originates from the equatorial region and spreads to the whole globe. Thus, a more accurate solar dynamo model must include an explanation of the origin and evolution of such solar internal current dynamics.

Distribution characteristics of a solar-surface magnetic field in the recent four solar cycles

  • ;안준모;이환희
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • Solar cycles are inherent to the Sun, which experiences temporal changes in its magnetic activity via the surface distribution of the solar magnetic field. This raises a fundamental question of how to derive the distribution characteristics of a solar-surface magnetic field that are responsible for individual solar cycles. We present a new approach to deriving as long-term and large-scale distribution characteristics of this quantity as was ever obtained; that is, we conducted a population ecological analysis of Wilcox Solar Observatory (WSO) Synoptic Charts which provide a more than 40-year time series of latitude-longitude maps of solar-surface magnetic fields. In this approach, solar-surface magnetic fields are assumed as hypothetical trees with magnetic polarities (magnetic trees) distributed on the Sun. Accordingly, we identified a peculiarity of cycle 23 with a longer period than an average period of 11 years; specifically we found that the negative surface magnetic field had much more clumped distributions than the positive surface magnetic field during the first one-third of this cycle, while the latter was dominant over the former. The Sun eventually spent more than one-third of cycle 23 recovering from these imbalances.

  • PDF

HOW MUCH DOES A MAGNETIC FLUX TUBE EMERGE INTO THE SOLAR ATMOSPHERE?

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.84.2-84.2
    • /
    • 2012
  • We studied the controlling parameters of flux emergence with a focus on the relation between the configuration of coronal magnetic field and the pre-emeged state of subsurface magnetic field. We performed a series of magnetohydrodynamic simulations (dynamic model) and find an interesting result on the twist of coronal magnetic field, that is, the coronal magnetic field formed via flux emergence actually contains less amount of twist (relative magnetic helicity normalized by magnetic flux) than what is expected in kinematic models for global-scale solar eruptions. Based on this result, we propose another possible mechanism for producing these global-scale solar eruptions.

  • PDF

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Geosynchronous Magnetic Field Response to Solar Wind Dynamic Pressure

  • Park, Jong-Sun;Kim, Khan-Hyuk;Lee, Dong-Hun;Lee, En-Sang;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.27-36
    • /
    • 2011
  • The present study examines the morning-afternoon asymmetry of the geosynchronous magnetic field strength on the dayside (magnetic local time [MLT] = 06:00~18:00) using observations by the Geostationary Operational Environmental Satellites (GOES) over a period of 9 years from February 1998 to January 2007. During geomagnetically quiet time (Kp < 3), we observed that a peak of the magnetic field strength is skewed toward the earlier local times (11:07~11:37 MLT) with respect to local noon and that the geosynchronous field strength is larger in the morning sector than in the afternoon sector. That is, there is the morning-afternoon asymmetry of the geosynchronous magnetic field strength. Using solar wind data, it is confirmed that the morning-afternoon asymmetry is not associated with the aberration effect due to the orbital motion of the Earth about the Sun. We found that the peak location of the magnetic field strength is shifted toward the earlier local times as the ratio of the magnetic field strength at MLT = 18 (B-dusk) to the magnetic field strength at MLT = 06 (B-dawn) is decreasing. It is also found that the dawn-dusk magnetic field median ratio, B-dusk/B-dawn, is decreasing as the solar wind dynamic pressure is increasing. The morning-afternoon asymmetry of the magnetic field strength appears in Tsyganenko geomagnetic field model (TS-04 model) when the partial ring current is included in TS-04 model. Unlike our observations, however, TS-04 model shows that the peak location of the magnetic field strength is shifted toward local noon as the solar wind dynamic pressure grows in magnitude. This may be due to that the symmetric magnetic field associated with the magnetopause current, strongly affected by the solar wind dynamic pressure, increases. However, the partial ring current is not affected as much as the magnetopause current by the solar wind dynamic pressure in TS-04 model. Thus, our observations suggest that the contribution of the partial ring current at geosynchronous orbit is much larger than that expected from TS-04 model as the solar wind dynamic pressure increases.

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

ON THE DISCREPANCY OF CORONAL MAGNETIC FIELDS IN SOLAR OPTICS AND RADIO

  • MA YUE-HuA;LI XIAO-QING
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.309-311
    • /
    • 1996
  • It is analysed the discrepancy about the coronal magnetic field between solar optic and solar radio using magnetic fibril concept with filling factor and fractal structure model. The magnetic field of $\~$ 100 G considered in solar optics is mean value in a large scale, and that of $\~$1000 G in solar should be the value of fine structures inside 'macro' loop.

  • PDF

Three-dimensional evolution of a solar magnetic field that emerges, organizes and produces a flare and flare-associated eruptions of a flux rope and plasmoid

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Solar flare is one of the energetic phenomena observed on the Sun, and it is often accompanied with eruptions such as global-scale eruption of a flux rope (filament/prominence eruption) and small-scale eruption of a plasmoid. A flare itself is a dissipative phenomenon where accumulated electric current representing free magnetic energy is dissipated quickly at a special location called a current sheet formed in a generally highly conductive solar corona. Previous studies have demonstrated how a solar magnetic field placed on the Sun forms a current sheet when magnetic shear is added to the field. Our study is focused on a self-consistent process of how a subsurface magnetic field emerges into the solar atmosphere and forms a current sheet in the corona. This study also gives light to a relation among a flare and two types of flare-associated eruptions; flux-rope eruption and plasmoid eruption.

  • PDF

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • 김록순;;문용재;조경석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Three-Dimensional Modeling of the Solar Active Region

  • ;;최광선
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.85.2-85.2
    • /
    • 2012
  • In this paper, we introduce the 3D modeling of the coronal magnetic field in the solar active region by extrapolating from the 2D observational data numerically. First, we introduce a nonlinear force-free field (NLFFF) extrapolation code based on the MHD-like relaxation method implementing the cleaning a numerical error for Div B proposed by Dedner et al. 2002 and the multi-grid method. We are able to reconstruct the ideal force-free field, which was introduced by Low & Lou (1990), in high accuracy and achieve the faster speed in the high-resolution calculation (512^3 grids). Next we applied our NLFFF extrapolation to the solar active region NOAA 10930. First of all, we compare the 3D NLFFF with the flare ribbons of Ca II images observed by the Solar Optical Telescope (SOT) aboard on the Hinode. As a result, it was found that the location of the two foot-points of the magnetic field lines well correspond to the flare ribbon. The result indicates that the NLFFF well capture the 3D structure of magnetic field in the flaring region. We further report the stability of the magnetic field by estimating the twist value of the field line and finally suggest the flare onset mechanism.

  • PDF