• Title/Summary/Keyword: Solar light

Search Result 1,239, Processing Time 0.03 seconds

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Implementation of A Safe Driving Assistance System and Doze Detection (졸음 인식과 안전운전 보조시스템 구현)

  • Song, Hyok;Choi, Jin-Mo;Lee, Chul-Dong;Choi, Byeong-Ho;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • In this paper, a safe driving assistance system is proposed by detecting the status of driver's doze based on face and eye detection. By the level of the fatigue, safe driving system alarms or set the seatbelt on vibration. To reduce the effect of backward light and too strong solar light which cause a decrease of face and eye detection rate and false fatigue detection, post processing techniques like image equalization are used. Haar transform and PCA are used for face detection. By using the statistic of the face and eye structural ratio of normal Koreans, we can reduce the eye candidate area in the face, which results in reduction of the computational load. We also propose a new eye status detection algorithm based on Hough transform and eye width-height ratio, which are used to detect eye's blinking status which decides doze level by measuring the blinking period. The system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. In this paper, four algorithms are implemented and proposed algorithm is made based on the probability model and we achieves 84.88% of correct detection rate through indoor and in-car environment experiments. And also we achieves 69.81% of detection rate which is better result than that of other algorithms using IR camera.

Importance of Polar Phytoplankton for the Global Environmental Change (전 지구 환경변화에 대한 극지 식물플랑크톤의 중요성)

  • 강성호;강재신;이상훈;김동선;김동엽
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2000
  • There are increasing evidences of climate change in the Antarctic and Arctic Oceans, especially elevated temperature due to the continuous burning of the fossil fuels and ultraviolet B(UV-B) flux within the ozone hole. Light-dependent, temperature-sensitive, and fast-growing organisms respond to these physical and biogeochemical changes. Polar marine phytoplankton, which are pioneer endemic species and important carbon contributors in the polar waters, are therefore highly suitable biological indicators of such changes. By virtue of light requirement, the primary producers are exposed to extreme seasonal fluctuations in temperature, photosynthetically active radiation, and UV radiation. Local environmental warming and increased UV-B radiation during ozone depletion may have profound effects on the primary producers that are primary carbon producers in the polar water. Small changes in climate temperature and solar radiation may have profound effects on the activity threshold of the polar phytoplanktion. To demonstrate biological response to the environmental changes, standardized representative natural and biological parameters are needed so that replicate samples (including controls) can be taken over extended periods of time. In this paper, we review general characteristics of polar phytoplankton, their environment, environmental changes in the polar waters, the effects on the environmental changes to the polar phytoplankton, and the importance of the polar phytoplankton to understand the global environmental changes. [Biological indicators, Global environmental change, Polar phytoplankton, UV].

  • PDF

Long-term performance of amorphous silicon solar cells by the stretched exponential defect kinetics (비정질 실리콘 태양전지에 대한 장시간 성능예측: 확장지수함수 모형 및 컴퓨터 모의실험)

  • Kim, J.H.;Park, S.H.;Lyou, Jong H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.105.2-105.2
    • /
    • 2011
  • 화비정질 실리콘의 빛에 의한 노화현상 (light-induced degradation; LID)은 이미 1977년 보고된 Staebler-Wronski 효과에 의해서 확인된 바 있다. 이는 비정질 실리콘이 빛에 노출될 때, 이미 포함되어 있는 수소원자가 빛 에너지에 의해서 이동하게 되고, 이로 인해서 생성 또는 소멸되는 댕글링 본드 때문에 일어난다. 특히, 일상적인 태양광의 노출 하에서 태양전지의 장시간 성능을 예측하는데 물리적인 이해의 부족 및 기술 환경적인 어려움이 있고, 이러한 요인들은 안정된 태양전지를 개발하는데 장해요인으로 나타난다. 그러므로 비정질 실리콘 태양전지가 장시간 태양광에 노출되어 시간이 지남에 따라서 "성능이 어떻게 변하는지?" 그리고 "이에 대한 원인은 무엇인지?" 등은 여전히 과학적으로 풀어야할 숙제로 남아있다. 본 논문에서는 비정질 실리콘으로 구성된 태양전지가 태양광에 노출될 때 시간이 지남에 따라서 (1) 성능이 어떻게 변하는지, (2) LID의 변화는 언제 안정화되는지, 그리고 (3) 성능변화에 대한 원인은 무엇인지에 대해서 논의한다. 본 논문은 장시간 빛에 노출되는 비정질 실리콘 태양전지의 성능예측에 관해서 연구하였다. 결함밀도의 운동학적 모형을 통해서 태양광 노출에 대한 태양전지 성능변화를 예측하는데 초점을 맞추었고, 이를 위해서 태양전지에 조사되는 태양광 세기, 주변온도, 등이 고려되었다. 특히, 전하운반자의 수명이 결함밀도에 의해서 결정되기 때문에 비정질 실리콘 태양전지의 빛에 대한 노화현상 (LID)이 확장지수함수 (stretched-exponential) 완화법칙을 따르는 결함밀도에 의해서 물리적으로 설명된다. 한편 이와 같은 물리적 계산의 유용성을 확인하기 위해서 동일한 태양전지에 대해서 AMPS-1D 컴퓨터 프로그램을 사용하였고, 이를 통해서 비정질 실리콘 태양전지의 빛에 대한 노화현상을 물리적 및 정량적으로 이해하였다. 본 연구에 적용되는 태양전지는 비정질 실리콘으로 구성된 pin 구조 (glass/$SnO_2$/a-SiC:H:B/a-Si:H/a-Si:H:P/ITO)로서 다음과 같은 특성을 갖는다: 에너지 띠간격~1.72 eV, 두께~400 nm, 내부전위~1.05 V, 초기 fill factor~0.71, 초기 단락전류~16.4 mA/$cm^2$, 초기 개방전압 0.90 V, 초기 변환효율 10.6 %. 우리는 이와 같은 연구를 통해서 과학적으로 비정질 실리콘의 빛에 의한 노화현상을 이해하고, 기술적으로 효율 및 경제성이 높은 태양전지의 개발에 도전한다.

  • PDF

Effects of Plant Spacing on Light Environment, Yield and Quality of Burley Tobacco (Burley종의 재식거잡가 광환경, 수량 및 품종에 미치는 영향)

  • 배성국;임해건
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.212-217
    • /
    • 1981
  • The evaluate the effect of plant spacing on cured leaf of burley tobacco, the row spacings divided to 90, 105, 120cm and hill spacings to 30, 35, 40cm within each row. Growth amount per plant increased with thinner row and wider hill spacing in the same planting density. Relative light intensity increased with thinner row spacing in cutters and leaf and showed the positive correlation with quality. When the planting density was equal, the wider hill spacings, the more effective in utillization of solar radiation. The more plants per l0a were, the greater yield was obtained, and in the case of 3,200 plants per 10a (the most dense planting plot) was 267kg. But, quality, total-alkaloid and total-nitrogen content decreased with dense planting. Value per 10a was highest in the plots of 90 $\times$ 40cm and $105{\times}40cm$. In conclusion the optimum density level was 2,400 to 2,700 plants per 10a and spacing of tobacco either in 105 $\times$ 35 cm or 105 $\times$ 40cm seems to be most appropriate.

  • PDF

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

The Korea Institute of Information, Electronics, and Communication Technology (RF Power 변화에 의한 CdS 박막 특성에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2021
  • This paper produces CdS thin film using ITO glass as substrates. The MDS (Multiplex Deposition Sputter System) was used to produce devices by changing RF power and deposition time. The manufactured specimen was analyzed for its optical properties. The purpose of this paper is to find the fabrication conditions that can be applied to the photo-absorbing layer of solar cells. When RF power was 50W and deposition time was 10 minutes, the thickness was measured at 64Å. At 100W, the thickness was measured at 406Å and at 150 W, the thickness was measured at 889Å. Thin films were found to increase in thickness as RF power increased. As a result of the light transmittance measurement, 550-850nm was observed to have a transmittance of approximately 70% or more when the RF power was 50W, 100W, and 150W. Increasing RF power increased thickness and increased particle size, resulting in increased thin film density, resulting in reduced light transmittance. When RF power was 100W and deposition time was 15 minutes, the band gap was calculated at 3.998eV. When deposition time is 20 minutes, it is 3.987eV, 150W is 3.965eV at 15 minutes, and 3.831eV at 20 minutes. It was measured that the band gap decreased as the RF power increased. At XRD analysis, diffraction peaks at 2Θ=26.44 could be observed regardless of changes in RF power and deposition time. The FWHM was shown to decrease with increasing deposition time. And it was measured that the particle size increased as RF power was constant and deposition time was increased.