• Title/Summary/Keyword: Solar energy material

Search Result 604, Processing Time 0.023 seconds

Characterization of Ag/TiO2 Nanoparticles Synthesis (Ag/TiO2미세입자 합성물의 특성 분석)

  • Kyungho Kang;Yonggi Jo;Sun-Geum Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.202-207
    • /
    • 2024
  • This study examines a manufacturing process for the photoelectrode material of dye-sensitized solar cell (DSSC) intending to increase efficiency through the surface plasmon resonance phenomenon of nanoparticles with a composite structure made of Ag and TiO2. This invention involves the use of Ag and TiO2 nanoparticles in the solar cell. These nanoparticles cause surface plasmon resonance, which amplifies and scatters incident solar energy, enhancing the dye's rate of light absorption. It also makes it possible to absorb energy in wavelength ranges that were previously difficult to do, which increases efficiency. Centrifugal separation and heat synthesis are used to create the composite metal structures, and certain combinations are used to decide the particle morphologies. To increase the efficiency of organic solar cells and DSSC, the Ag/TiO2 composite structure is therefore quite likely to be used.

Examination of the properties of Solar Glazing Materials (태양열투과체의 특성에 관한 고찰)

  • Lee, Jong-Ho;Yoon, Kyung-Hoon;Jeong, Joo-Hee;Auh, P.Chung-Moo
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.37-53
    • /
    • 1982
  • In general, glass has proven to be an effective glazing material, exhibiting extended service lifetime and high solar transmittance while remaining opaque to long wave thermal reradiation. Plastics, which possess higher solar transmittance than commercial glass, are lightweight and also cost competitive with glass. In this paper a survey of various glazing materials is presented, and the comparative analysis of their properties are perform ed in detail with special emphasis on double glazing materials, which can be adaptable to various passive solar systems.

  • PDF

Influence of Inverted Pyramidal Surface on Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 표면 역 피라미드 구조의 특성 분석)

  • Yang, Jeewoong;Bae, Soohyun;Park, Se Jin;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.86-90
    • /
    • 2018
  • To generate more current in crystalline silicon solar cells, surface texturing is adopted by reducing the surface reflection. Conventionally, random pyramid texturing by the wet chemical process is used for surface texturing in crystalline silicon solar cell. To achieve higher efficiency of solar cells, well ordered inverted pyramid texturing was introduced. Although its complicated process, superior properties such as lower reflectance and recombination velocity can be achieved by optimizing the process. In this study, we investigated optical and passivation properties of inverted pyramid texture. Lifetime, implied-Voc and reflectance were measured with different width and size of the texture. Also, effects of chemical rounding at the valley of the pyramid were observed.

Research on Improvement of Efficiency in Flat Plate Solar Collector by Using Double-Wall Glazing and VIP Insulation (이중투과체 및 VIP복합 단열재 적용 평판 집열기의 성능 향상에 대한 연구)

  • Lee, Doo Ho;Jang, Han Bin;Kim, Young Hak;Do, Kyu Hyung;Lee, Kwang Seob;Lyu, Nam Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.458-465
    • /
    • 2016
  • The purpose of this research is to improve the thermal effiency of solar collector and to quantitatively analyze its performance. Solar thermal systems have been limited to water heating systems mainly using low-temperature range. However, through diverse developments, the application has been extended to medium- and high-temperature fields such as solar heating, solar air conditioning, and solar thermal industrial process. Among the diverse research, this research is specially focusing on enhancement of the thermal performance by minimizing the heat loss coefficient of flat plate solar collectors. In order to do it, a front-side glazing material and a back-side insulation material with high insulated structure is proposed and based on computational analysis, the performance of energy collecting volume of the proposed solar collector is analyzed. The research shows that the proposed structure has the excellent performance at medium- and high-temperature range. therefore, it is expected that the proposed structure can easily replace existing technologies.

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells (페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과)

  • Jung, Minsu;Choi, In Woo;Kim, Dong Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

Building Integrated Photovoltaics: Technical and Aesthetic Prospects

  • Polgampola Chamani Madara;Hasnain Yousuf;Muhammad Aleem Zahid;Suresh Kumar Dhungel;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.154-163
    • /
    • 2024
  • The energy demand in the world is expected to exceed 740 million TJ by 2040 and our dependence on fossil fuels needs to be switched to sustainable and renewable energy sources like solar energy. Building Integrated Photovoltaic (BIPV) is one of the best approaches to extracting solar energy. There are more than 200 BIPV products in the market currently but when it comes to integrating these products into the technical aspects such as buildings' structural integrity, thermal, daylight retainment and aesthetic prospects to be considered. The share of BIPV integration potential of different building types in the world of residential, agricultural, industrial, commercial and other buildings account for 66%, 4.8%, 8.1%, 19.9%, and 1.2% accordingly. Many solar technologies developed to achieve architectural requirements, but the main problem is the trade-off between efficiency and aesthetic appeal, which is less than 10% in coloured and transparent solar modules. This paper discusses the different applications of solar photovoltaics (PV) in building architecture, technical requirements, and different module technologies. The article provides a comprehensive guide for researchers and designers working on the development of BIPV integrations.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

The research of porous Si for crystalline silicon solar cells (다공성 실리콘을 적용한 결정질 실리콘 태양전지에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.235-235
    • /
    • 2010
  • The Anti-reflection coating(ARC) properties can be formed on silicon substrate using a simple electrochemical etching technique. This etching step can be improve solar cell efficiency for a solar cell manufacturing process. This paper is based on the removal of silicon atoms from the surface a layer of porous silicon(PSi). Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. It have demonstrated the feasibility of a very efficient porous Si layer, prepared by a simple, cost effective, electrochemical etching method. We expect our research can results approaching to lower than 10% of reflectance by optimization of process parametaer.

  • PDF

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

The Effect of Barrier Layer on Thin-film Silicon Solar Cell Using Graphite Substrates (탄소 기판을 이용한 박막 실리콘 태양전지의 배리어 층 효과)

  • Cho, Young Joon;Lee, Dong Won;Cho, Jun Sik;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.505-509
    • /
    • 2016
  • We have investigated the characteristics of amorphous silicon (a-Si) thin-film solar cell by inserting barrier layer. The conversion efficiency of a-Si thin-film solar cells on graphite substrate shows nearly zero because of the surface roughness of the graphite substrate. To enhance the performance of solar cells, the surface morphology of the back side were modified by changing the barrier layer on graphite. The surface roughness of graphite substrate with the barrier layer grown by plasma enhanced chemical vapor deposition (PECVD) reduced from ~2 um to ~75 nm. In this study, the combination of the barrier layer on graphite substrate is important to increase solar cell efficiency. We achieved ~ 7.8% cell efficiency for an a-Si thin-film solar cell on graphite substrate with SiNx/SiOx stack barrier layer.