• Title/Summary/Keyword: Solar energy harvesting

Search Result 131, Processing Time 0.031 seconds

A Photovoltaic Energy Harvesting Charger with Battery Management (배터리 관리 기능을 갖는 빛 에너지 하베스팅 충전기)

  • Kim, Kook-dong;Park, Sa-hyun;Kim, Dae-kyung;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.561-564
    • /
    • 2014
  • In this paper a photovoltaic energy harvesting charger with battery management circuit is proposed. The proposed circuit harvests maximum power from a solar cell by employing MPPT(Maximum Power Point Tracking) control and charges an external capacitor battery with the harvested energy. The charging state of the battery is controlled according to the signals from the battery management circuit. The proposed circuit is designed in a 0.35um CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 84.8%, and the chip area including pads is $1350um{\times}1200um$.

  • PDF

Separation of Xanthorhodopsin from Salinibacter ruber and Its in vitro Reconstruction (Salinibacter ruber로부터 잔토로돕신의 분리와 in vitro에서 재구축)

  • Kong, Min-Kyung;Yim, Joung-Han;Lee, Pyung-Cheon
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.280-282
    • /
    • 2011
  • Capture and conversion of abundant solar energy using biotechnology will be essential for the development of sustainable and future energy. Photosynthesis is used for the production of biofuels such as biohydrogen. In this study, lightharvesting xanthorhodopsin consisting of retinal and salinixanthin was isolated from a photosynthetic microorganism Salinibacter ruber by aqueous two phase extraction. To stabilize the light-harvesting machine, artificial xanthorhodopsin-liposome system was reconstructed to have photoelectron absorption activity.

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.

Design of Dispersed Clustering Algorithm for Efficient Energy Management in Wireless Sensor Network (무선 센서 네트워크에서 효율적인 에너지 관리를 위한 분산형 클러스터링 알고리즘 설계)

  • Jeon, Min-Ho;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.839-842
    • /
    • 2011
  • Lately Various researches on energy harvesting techniques for wireless sensor networks have been performed to overcome the power limitation of sensor nodes. In wireless sensor networks with harvesting techniques, sensor nodes exploit environmental energy, such as solar or wind energy, as the power sources of the nodes. Existing energy constrained environment routing protocols may not be suitable for energy harvesting based wireless sensor networks because they do not consider the accumulated energy from harvesting devices. In addition, the paths which aren't dispersed shorten the network lifetime. Therefore, in this paper, the algorithm that the path between each node is dispersed is proposed. In case of using the algorithm to be proposed through the simulator it showed that path of the node is variously reflected.

  • PDF

The research of anti-reflection coating using porous silicon for crystalline silicon solar cells (다공성 실리콘을 이용한 결정질 실리콘 태양전지 반사방지막에 관한 연구)

  • Lee, Jaedoo;Kim, Minjeong;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The crystalline silicon solar cells have been optical losses. but it can be reduced using light trapping by texture structure and anti-reflection coating. The high reflective index of crystalline silicon at solar wavelengths(400nm~1000nm) creates large reflection losses that must be compensated for by applying anti-reflection coating. In this study, the use of porous silicon(PSi) as an active material in a solar cell to take advantage of light trapping and blue-harvesting photoluminescence effect. Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. We expect our research can results approaching to lower than 10% of several reflectance by porous silicon solar cells.

  • PDF

Mechanism Development and Heading Control of Catamaran-type Sail Drone

  • Man, Dong-Woo;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.360-368
    • /
    • 2021
  • The need for energy harvesting in marine environments is gradually increasing owing to the energy limitation of marine robots. To address this problem, a catamaran-type sail drone (CSD), which can harvest marine energies such as wind and solar, was proposed in a previous study. However, it was designed and manufactured without considering the stability, optimal hull-form, and maintenance. To resolve these problems, a CSD with two keels, a performance estimator, V-shape hulls, and modularized components is proposed and its mechanism is developed in this study. To verify the performance of the CSD, the performance estimation using smoothed-particle hydrodynamics (SPH) and the heading control using fuzzy logic controller (FLC) are performed. Simulation results show the attitude stability of the CSD and the experimental results show the straight path of the CSD according to wind conditions. Therefore, the CSD has potential applications as an energy harvesting system.

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

Efficient Energy Management for a Solar Energy Harvesting Sensor System (태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun;Yoon, Ik-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.478-488
    • /
    • 2009
  • Using solar power in wireless sensor networks (WSNs) requires adaptation to a highly varying energy supply and to a battery constraint. From an application's perspective, however, it is often preferred to operate at a constant quality level as opposed to changing application behavior frequently. Reconciling the varying supply with the fixed demand requires good tools for allocating energy such that average of energy supply is computed and demand is fixed accordingly. In this paper, we propose a probabilistic observation-based model for harvested solar energy. Based on this model, we develop a time-slot-based energy allocation scheme to use the periodically harvested solar energy optimally, while minimizing the variance in energy allocation. We also implement the testbed and demonstrate the efficiency of the approach by using it.

Design of a Photo Energy Harvesting Circuit Using On-chip Diodes (온칩 다이오드를 이용한 빛에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jun-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.549-557
    • /
    • 2012
  • In this paper an on-chip photo energy harvesting system with MPPT(Maximum Power Point Tracking) control is proposed. The ISC(Integrated Solar Cell) is implemented using p-diff/n-well diodes available in CMOS processes. MPPT control is implemented using the linear relationship between the open-circuit voltage of a PV(Photovoltaic) cell and its MPP(Maximum Power Point) voltage such that a small pilot PV cell can track the MPP of a main PV cell in real time. Simulation results show that the designed circuit with the MPPT control delivers the MPP voltage to load even though the load is heavy such that the load circuit can operate properly. The proposed circuit is designed in 0.18um CMOS process. The designed main PV cell and pilot PV cell occupy $8mm^2$ and $0.4mm^2$ respectively.

A Study on the CO2 Emission Reduction Effect relating to the Water Usage Reduction in Multi-family Residential Building (공동주택 건물의 상수도 절감량에 따른 CO2 배출량 저감효과에 관한 연구)

  • Cho, Su-Hyun;Kang, Hae-Jin;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.126-133
    • /
    • 2011
  • The current world wide interest in environmental issues has moved from energy conservation to $CO_2$emission reduction. Recently, according to the increase in demand for water resources, insufficient potable water circumstance is supposed, unless there are corresponding in crease in water conservation and water recycling. This study has attempted to analyze $CO_2$emission reduction by water saving strategies like installation water saving devices, rain water harvesting and grey water system. To do this, this research investigates applicable water conservative strategies by literature review and calculated total water saving. The results show that (1) firstly, the water usage and $CO_2$ emission could be reduced up to 44%, (2) $CO_2$ emission reduction by water saving devices and rainwater harvesting system is about 47.7%, and (3) water usage and $CO_2$ emission reduction by grey water system is about 66%. In the future, this paper will be utilized for water management from the early design stage to maintenance stage of water glutton building.