• Title/Summary/Keyword: Solar charging

Search Result 153, Processing Time 0.024 seconds

A Study on Characteristics of Charging and Discharging for Lead Storage Batteries in Series (직렬 연결된 납축전지의 충방전 전압 특성 연구)

  • Moon, Chae-Joo;Jin, Jong-Soo;Seo, Dong-Choon;Jung, Kwen-Sung;Kim, Tae-Gon;Kim, Young-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.75-79
    • /
    • 2008
  • To control the lead storage batteries it is necessary to consider the characteristics of each battery connected in series. In this study, the charging and discharging characteristics of sealed lead storage batteries 12V/1.2A was investigated one by one through experiments. The results of the experiment shows that one should consider the state of each battery to prevent overcharge or deep discharge. Also, we designed an equipment to measure battery voltages simultaneously using micro-controller. This equipment will be useful for monitoring batteries at PV generation system.

  • PDF

The Battery Charger System for Electric Bicycle using Photovoltaic Power (태양광 발전을 이용한 전기자전거용 배터리 충전장치)

  • Won, Dong-Jo;Lee, Joo-Hyuk;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • In this paper, we propose the battery charging device for electric bicycle using photovoltaic power. DC voltage from the solar cells is low, it needs to be step-up by the power conversion device. The power conversion device applied to this paper is phase-shift full-bridge converter. This converter steps-up from 12${\sim}$22[Vdc] to 36[Vdc] for charging the battery of electric bicycle. Phase-shift full-bridge converter(PSFB) can obtain twice as much DC voltage compared with half-bridge converter, thus it has lower current stress less than half-bridge converter. It is simulated and tested the battery charging device using photovoltaic power.

  • PDF

A Study of the Photo-Electric Efficiency of Dye-Sensitized Solar Cells Under Lower Light Intensity

  • Kim, Hee-Je;Kim, Yong-Chul;Hong, Ji-Tae;Kim, Mi-Jeong;Seo, Hyun-Woong;Park, Je-Wook;Choi, Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.513-517
    • /
    • 2007
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells (DSCs), we compared conventional Si solar cells with DSCs. DSC modules still require a larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, in backup systems by using batteries, the measured data shows that DSCs generated 15% more electricity than Si solar cells of the same rated output power in the same interval of cloudy daylight. Moreover, the battery charging time of DSCs is about 1 hour faster than the same rate of Si solar cells under outdoor cloudy daylight. This result also indicates that conversion efficiency obtained by the certified condition less than AM 1.5 condition does not always coincide with the electricity generated outdoors daily, and it is not a crucial measure to evaluate the performance of solar cells.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Development of Current Control System for Solar LED Street Light System

  • Kim, Byun-Gon;Kim, Kwan-Woong;Jang, Tae-Su;Lee, Jun-Myung;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.52-56
    • /
    • 2012
  • As inexhaustible clean energy, solar energy will be the most ideal green energy in the 21st century. The effective method to convert solar energy into electrical energy is by solar photovoltaic power generation technologies. LED Emitting Diode is a kind of component which can transform electricity into visible light. As the smart current control system for photovoltaic street lights, the proposed system has improved the battery charging and discharging mechanism to extend the lifespan and effectively controls the LED discharge current according to battery charge state and lighting.

Independent Generation System Design for the Economic Management of Electrical Charging Stations (전기충전소의 경제적 운영을 위한 독립발전 시스템 설계)

  • Seo, Jin-Gyu;Kim, Kyu-Ho;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.222-227
    • /
    • 2015
  • This paper presents the optimal energy generation systems for economical EVs(Electric Vehicles) charging stations located in an island area. The system includes grid electricity, diesel generator and renewable energy sources of wind turbines and PV(Photovoltaic) panels. The independent generation system is designed with data resources such as annual average wind speed, solar radiation and the grid electricity price by calculating system cost under different structures. This sensitive analysis on the varying data resources allows for the configuration of the most economical generation system for charging stations by comparing initial capital, operating cost, NPC(Net Present Cost) and COE(Cost of Energy). Depending on the increase of the grid cost, the NPC variation of the most economical system which includes renewable energy generations and grid electricity can be smaller than those of other generation systems.

A Study on Quadcopter Consisting of Dual Li-Po Battery Charging by Solar Cell in the Engineering Education Completed a Senier Project Work at the University (공학교육 이수체계에서 대학 졸업 작품용 이중 Li-Po 전원 사용 태양전지 충전 쿼드콥터 구성에 관한 연구)

  • Yoon, Seong-Geun;Kim, Kyung-Bin;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Depending on the college graduation project and graduation thesis regulations for the certification and graduation requirements, the quadcopter acting as a Li-Po battery that charges by solar energy are proposed a design method and improvements in theory. Quadcopter posture is balanced and confirmed by the position sensor, through a PID (Proportional Integral Differential) control. Battery switching circuit is composed of two Li-Po battery. Driving the quadcopter as one battery, and does not use other battery is charged by solar energy. A battery switching circuit is fabricated in a manner that uses two types of relays. Even if completely not charged to the battery is being driven a certain switch by the battery charging voltage from time to time, it proposes a method for increasing the endurance time and range.

Failure Analysis of Solar Array Regulator Controller for Charging Satellite Battery (위성 배터리 충전을 위한 태양전력조절기의 제어기 고장 분석)

  • Yang, JeongHwan;Park, JeongEon;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.67-71
    • /
    • 2017
  • A solar array is main electrical energy source for Low-Earth-Orbit(LEO) satellite. The solar array cannot generate electrical energy during eclipse period, a battery supply electrical energy to the satellite. The electrical power of the solar array is changed in accordance with operating voltage and the solar array has the maximum power point. The solar array regulator makes the solar array supply electrical energy to the satellite and charge the battery. The solar array is connected to the solar array regulator input and the battery is connected to the solar array regulator output. The solar array regulator consists 2 of 3 hot redundant. One solar array regulator contains 3 DC-DC converters, and the solar array regulator operates stably even if the failure occur in one DC-DC converter. In this paper, the solar array regulator, the battery and the solar array operation is analyzed when the failure occur in one DC-DC converter.

The Study for EV Charging Infrastructure connected with Microgrid (마이크로그리드와 연계된 전기자동차 충전인프라에 관한 연구)

  • Hun Shim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In order to increase the use of electric vehicles (EVs) and minimize grid strain, microgrid using renewable energy must take an important role. Microgrid may use fossil fuels such as small diesel power, but in many cases, they can be supplied with energy from renewable energy, which is an eco-friendly energy source. However, renewable energy such as solar and wind power have variable output characteristics. Therefore, in order to meet the charging and discharging energy demands of electric vehicles and at the same time supply load power stably, it is necessary to review the configuration of electric vehicle charging infrastructure that utilizes diesel power or electric vehicle-to-grid (V2G) as a parallel energy source in the microgrid. Against this background, this study modelized a microgrid that can stably supply power to loads using solar power, wind power, diesel power, and V2G. The proposed microgrid uses solar power and wind power generation as the primary supply energy source to respond to power demand, and determines the operation type of the load's electric vehicles and the rotation speed of the load synchronous machine to provide stable power from diesel power for insufficient generations. In order to verify the system performance of the proposed model, we studied the stable operation plan of the microgrid by simulating it with MATLAB /Simulink.

Analysis on the Operational Characteristics of the Combined Generation System with Power Storage Apparatus that Apply Microcontroller

  • Lim, Jung-Yeol;Yoon, Seok-Am;Cha, In-Su
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.24-30
    • /
    • 2002
  • The developments of the solar and the wind power energy are necessary since the future alternative, energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a flew faults with the weather condition. In order to solve these existing problem combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added far the present study. In an experiment, when output of combined generation system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.