• 제목/요약/키워드: Solar Thermal Power

검색결과 338건 처리시간 0.03초

스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구 (Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level)

  • 윤종호;오명환;강기환;이재범
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

서해안 곰소만 갯벌 온도의 구조 및 변화 (Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea)

  • 이상호;조양기;유광우;김영곤;최현용
    • 한국해양학회지:바다
    • /
    • 제10권1호
    • /
    • pp.100-112
    • /
    • 2005
  • 갯벌의 온도구조와 열적 특성변화를 조사하기 위해 서해안 공소만 갯벌조간대에서 고도가 다른 3개 지점을 설정하여 40 cm깊이까지 계절별로 1개월간의 온도관측을 수행하였다. 표층에서 평균온도는 하계에 아래층보다 높고 동계에는 낮아져 표층가열과 냉각에 의한 온도구조와 변화 형태를 보여주었으며 표준편차는 아래층으로 갈수록 감소하였다. 주기성이 뚜렷한 일사량과 조위 변화가 주로 단기적 온도변화를 야기하였고, 간헐적으로는 강우와 강한 풍속도 영향을 주었다. 시계열분석에 의하면 24시간, 12시간 그리고 8시간 주기 성분에 강한 에너지 첨두(peak)를 보였으며, 24시간 주기성분이 가장 큰 에너지를 보였다. 24시간 주기 성분은 일사량변화, 12시간 주기는 반일주조 조위변화 그리고 8시간 주기성분은 일사량과 조위변화의 상호작용에 의한 온도파동으로 해석되었다. EOF분석에서 제 1모드와 제 2모드가 수직온도구조 변화의 96%를 차지하였다 제 1모드는 갯벌 표층에서의 가열과 냉각에 의한 현상으로, 제 2모드는 갯벌내부의 열 전파과정에서 발생하는 지연효과로 해석되었다. 교차스펙트럼 분석에서 24시간 주기성분 온도파동에 의한 열전달위상은 깊이에 따라 선형적으로 증가하는 평균위상 차이를 보였고, 표층에서 10 cm, 20 cm, 40 cm 깊이까지의 위상 차이에 의한 지연시간은 각각 3.2시간, 6.5시간 9.8시간이었다. 일차원적 열확산모델에서 산출된 24시간 주기성분 온도파동의 수직 확산계수는 깊이와 계절에 걸쳐 평균하였을 때 중부조간대 정점에서는 $0.70{\times}10^{-6}m^2/s$, 하부조간대 정점에서는 $0.57{\times}10^{-6}m^2/s$의 값을 보였다. 깊이 평균된 확산계수는 봄철에 크고 여름철에 작았고, 계절 평균된 확산계수는 2cm부터 10cm깊이까지 증가하고 10cin부터 40cm깊이까지는 감소하는 수직구조를 보였다. 평균 열확산계수를 사용하여 구한 온도전파 확산속도는 2 cm 깊이로부터 10 cm, 20cm, 40cm까지 각각 $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;1.7{\times}10^{-4}cm/s$정도의 값이 되어 표층에서 깊어질수록 작아졌다.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

DC 마그네트론 스퍼터법에 의한 ZnO:Al 투명전도막 특성 (Some properties of ZnO:Al Transparent Conducting Films by DC Magnetron Sputtering Method)

  • 박강일;김병섭;김현수;임동건;박기엽;이세종;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.143-146
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and discharge power on the electrical, optical and morphological properties were investigated experimentally. The consideration on the effect of doping amounts of Al on the electrical and optical properties of ZnO thin film were also carried out. ZnO:Al films with the optimum growth conditions showed resistivity of $9.42{\times}10^{-4}\;{\Omeg}-cm$ and transmittance of 90.88% for 840nm in film thickness in the wavelength range of the visible spectrum.

  • PDF

ZnO:Al투명전도막의 전기적 특성에 미치는 Bias 전압의 영향 (Effect of substrate bias on electrical properties of ZnO:Al transparent conducting film)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.408-411
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure, discharge power and doping amounts of Al on the electrical, optical and morphological properties were investigated experimentally. The effect of bias voltage on the electrical properties of ZnO thin film were also studied. Films with lowest resistivity of $5.4{\times}10^{-4}\;{\Omega}-cm$ have been achieved in case of films deposited at 1mtorr, $400^{\circ}C$ with a substrate bias of +10V for 840nm in film thickness.

  • PDF

시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현 (Implementation of Photovoltaic Panel failure detection system using semantic segmentation)

  • 신광성;신성윤
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1777-1783
    • /
    • 2021
  • 대단위 신재생 에너지 발전단지의 효율적인 유지관리를 위해 드론의 활용이 점차 증가하고 있다. 오래전부터 태양광 패널을 드론으로 촬영하여 패널의 유실 및 오염 등을 관리하고 있다. 본 논문에서는 열화상카메라를 장착한 드론을 이용하여 획득된 태양광패널 이미지에서 아크, 단선, 크랙 등의 고장 유무를 판별하기 위해 시멘틱세그멘테이션 기법을 이용한 분류모델을 제안한다. 또한 적은 데이터셋으로도 강인한 분류 성능을 보이는 U-Net의 튜닝을 통해 효율적인 분류모델을 구현하였다.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

유리기판 위에 Ag 후막의 마이크로웨이브 소결 (Microwave Sintering of Silver Thick Film on Glass Substrate)

  • 황성진;;;김형순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.22-22
    • /
    • 2009
  • The silver thick film has been used in many industries such as display, chip, solar cell, automobile, and decoration with conventional heating. The silver thick film is fired with optimal time and temperature. However, decreasing the fabrication time is required due to high production power. Furthermore, there is a problem that silver in electrode is diffused throughout any substrates. For inhibiting the Ag diffusion and long fabrication time we considered a microwave heating. We investigated firing of silver thick film with conventional and microwave heating. The temperature of substrate was measured by thermal paper and the temperature of substrate was under $100\;^{\circ}C$ The shrinkage of electrode was measured with optical microscopy and optical profilometry. The shrinkage of electrode heat treated with microwave for 5min was similar to the that fired by the conventional heating for several hours. After firing by two types of heating, the diffusion of silver was determined using a optical microscope. The microstructure of sintered silver thick film was observed by SEM. Based on our results, the microwave heating should be a candidate heating source for the fabrication electronic devices in terms of saving the tact time and preventing the contamination of substrate.

  • PDF

영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법 (The Signal-to-Noise Ratio Enhancement of the Satellite Electro-Optical Imager using Noise Analysis Methods)

  • 박종억;이기준
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.159-169
    • /
    • 2017
  • 위성용 전자광학탑재체는 제한된 소모전력 및 우주방사선과 같은 사용 환경에 의해 설계부터 특별한 요구사항을 가지고 있으며, 획득 영상의 품질은 주로 GSD (Ground Sampled Distance), 신호대잡음비(SNR, Signal to Noise Ratio), MTF (Modulation Transfer Function)에 따라 좌우된다. 영상센서의 출력신호에 포함된 잡음 감소를 통한 신호대잡음비 개선을 위하여, 센서에 추가된 프리픽셀(Pre-pixel) 및 다크픽셀(Dark-pixel)을 사용하여 CDS (Corrective Double Sampling) 방식을 통해 영상센서의 잡음 성분을 포함한 오프셋 신호(Offset Signal)를 제거하는 아날로그 신호처리(ASP, Analog Signal Processor) 방법을 제안한다. 또한 센서 제어시스템에서는 영상의 불균일성 처리를 위해 제어시스템의 출력 포트별 게인(Gain), 오프셋, 및 센서의 화소별 특성을 반영한 다양한 방식에 의한 보정 방법이 적용된다. 본 논문에서는 이상 설명한 여러 가지 잡음 개선방법을 시스템 설계 및 운영에 적용하여 위성탑재용 전자광학카메라의 신호대잡음비 향상 방법을 제안하고, 실험을 통해 검증한다.