• Title/Summary/Keyword: Solar Thermal Energy System

Search Result 653, Processing Time 0.025 seconds

Performance Prediction of a Hot Water Supply and Panel Heating System with Solar Energy (태양열 온수 및 난방 일체형 복합시스템의 성능예측)

  • Han, Yuri;Park, Youn Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a simulation program was developed with heat transfer model in the thermal storage tank for a solar collector and burner combined heating and hot water supply system. Analysis was conducted with variation of operating condition and schedule to analyze performance of a hot water supply and panel heating system with a solar collector and burner combined thermal storage tank. The simulation program is divided two sections. One part is calculation of temperature variation of water which flows through the panel in the floor for heating of the residential house during 24 hours, and the other part is heat transfer calculation for the reaction time to get desired water temperature in the thermal storage tank. As results, light oil consumption and system performance during operation period were analyzed with variation of climate condition and with or without solar collector. Most of the case, oil could be saved about from 24 to 41% with installing the solar collector. The performance of the system is more dependent on radiation time of the solar collector rather than the intensity of the solar radiation which was adopted for the climate analysis.

Analysis of Solar Radiation Components for the Installation of Solar Thermal System in Korea (국내 태양열시스템 설치를 위한 성분일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.12-18
    • /
    • 2009
  • The Knowledge of the solar radiation components are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high thermodynamic efficiency achievable only at the higher temperatures. In order to estimate the performance of concentrating thermal systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since January, 2002. KIER's component data will be extensively used by concentrating system users or designers as well as by research institutes. The theoretical analysis of solar radiation as a component has compared with the experimental data obtained by the KIER station. The Result of simulation analysis shows that the annual-average daily diffuse radiation on the horizontal surface is $1,457cal/m^2$ and daily direct radiation on the horizontal surface is $1,632cal/m^2$ for all over the 16 areas in Korea.

Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

Design and Development Trends of Solar Thermal Power Generation in Korea (국내의 태양열발전 기술개발 동향 및 설계)

  • Kang, Yong-Heack;Kim, Jin-Soo;Kim, Jong-Kyu;Lee, Sang-Nam;Yu, Chang-Kyun;Yoon, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.658-661
    • /
    • 2007
  • KIER have been developing high-temperature solar technology, especially the solar thermal power generation system, since the early of 1990s. In 1994, the first research on high temperature solar technology started with PTC technology. At the moment the most advanced 10kW dish system is under demonstration for 10kW solar thermal power generation. Test results showed about 19.2% solar to electricity average efficiency. Another research activities of KIER is hybrid power generation. For hybridization, solar and LFG(landfill gas) are used. Another hybrid solar system is with solar chemical reaction. In this system, power unit is gas turbine, and the heat content of fuel(like natual gas) is upgraded by solar energy through chemical reaction. The latest project on solar thermal power generation is for 1 MW power tower system. This is the Korea-China Joint project.

  • PDF

A Literature Review on Hybrid PV/Thermal Air Collector in terms of its Design and Performance (공기식 PVT 컬렉터의 디자인 및 성능에 관한 연구 동향 분석 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.30-41
    • /
    • 2014
  • PV/Thennal combined system is a solar energy device that uses photovoltaic module as thermal absorption plate, producing thermal energy as well as electricity which can be utilized in buildings. The system removes heat from PV module through air or liquid and its efficiency will vary dependant on the thermal medium. The heat as the forms of hot air or hot water can be utilized for building use, like space heating and hot water. A significant amount of research and development on hybrid PV/thermal(PVT) collectors has been carried out. This study reviews literature on the research of air-based hybrid PVT collectors in terms of their design and energy performance.

A Study on Performance of Solar Thermal System for Domestic Hot Water According to the Weather Conditions and Feedwater Temperatures at Different Locations in Korea (지역별 기상조건과 급수온도에 따른 태양열 온수공급 시스템 성능에 관한 연구)

  • Sohn, Jin Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.41-54
    • /
    • 2019
  • The purpose of this study is to analyze the performance of solar thermal system according to regional weather conditions and feedwater temperature. The performance analysis of the system was carried out for the annual and winter periods in terms of solar fraction, collector efficiency and it's optimal degree. The system is simulated using TRNSYS program for 6 cities, Seoul, Incheon, Gangneung, Mokpo, Gwangju, and Ulsan. Simulation results prove that the solar fraction of the system varies greatly from region to region, depending on weather conditions and feedwater temperatures. Monthly average solar fraction for winter season from November to February, a time when heat energy is most required, indicated that the highest is 73.6% in Gangnueng and the lowest is 56.9% in Seoul. This is about 30% relative difference between the two cities. On the other hand, the collector efficiency of the system for all six cities was analyzed in the range between 40% and 42%, indicating small difference compare to the solar fraction. The annual average solar fraction is rated the highest at 40 collector degree, while monthly average solar fraction during winter season is rated at 60 degree.

The Study on Prediction of Hot Water Extraction in a Thermal Energy Storage System (축열시스템의 온수이용 예측에 관한 연구)

  • Cho, W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 1998
  • In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load for demand. Lately, practical use of thermal energy storage system and attention to essential use of energy have been increased. From this point of view, especially, a study about the energy extraction process from a storage tank is necessary. So in this study, useful rate of hot water and hot water extraction efficiency was analysed respect to dynamic and geometric parameters dominating the hot water extraction process.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

A Study on the Energy Self-Sufficiency of KIER Zero Energy Solar House II (제로에너지 솔라하우스(KIER ZESH-II)의 에너지 자립도에 대한 연구)

  • Jeong, Seonyeong;Baek, Namchoon;Yoo, Changkyoon;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • The purpose of this study is on the thermal performance evaluation of KIER Zero Energy Solar House-II, called ZeSH-II which can be sustained with the support of a very few energy. This ZeSH-II was designed and constructed in the end of 2009 to develop for the goal of 70% self-sufficiency. Several key technologies like as the super insulation, high performance window, wast heat recovery system as well as solar power and thermal system and geo-source heat pump wear used for this ZeSH-II. The monitering of ZeSH-II was conducted for six months from November 2009 to April 2010. The monthly energy consumption was calculated based on the monitering results. As a result, the ZeSH-II shows that the energy self-sufficiency during six months(from oct. to apr.) is about 80% which is higher than that of the target.

  • PDF