• Title/Summary/Keyword: Solar System

Search Result 4,088, Processing Time 0.03 seconds

A study on solar-wind hybrid power generation system (태양광 및 풍력 하이브리드 발전 시스템에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1226-1231
    • /
    • 2009
  • In this paper, a solar-wind hybrid system is decsribed for Stand-Alone(SA) power generation system. Mostly SA power generation system for ocean facilities composes a solar system. Normally, the output power of solar system is decreased with weather condition as cloudy and rainy. Solar-wind hybrid system can be operated as complement system each other. In this paper, the characteristic simulation of solar and wind is performed by LabVIEW. The hybrid power generation system is designed according to simulation results, and is tested for checking the complement characteristic.

Study on the method for calculating of optimal passive elements values in Maximum Solar Energy Tracking System (Maximum Solar Energy Tracking System에서의 최적정수산정에 관한 연구)

  • Hwang, Young-Moon;Baek, Byung-San;Sung, Baek-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.425-429
    • /
    • 1990
  • In order to spread the practical utilization of solar energy, it depends upon how we can increase the efficiency of solar energy conversion system. This paper describes the method for calculating of optimal passive elements values in Maximum Solar Energy Tracking System. And experimental results with those calculated values are presented.

  • PDF

Solar Absorption System Analysis with Spreadsheet Models (태양열 이용 흡수식 냉난방시스템의 스프레드쉬트 모델)

  • Choi, Hong-Kyu;Fazzolari, Rocco A.
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.15-24
    • /
    • 1992
  • An hourly simulation model of a solar LiBr-water absorption cooling and heating system (for brevity, solar absorption system) is presented, based on SuperCalc spreadsheet computational procedures. This paper demonstrates the value of using spreadsheet simulation techniques by examining the thermal performances of a solar absorption system. The hourly heating and cooling coil loads for a typical office building in Tucson, Arizona are modeled and calculated using ASHRAE methods. The details of the algorithms for the components and control schemes are presented. Two case studies are also presented using real system parameters.

  • PDF

Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source (R123 열원 적용 증발식 담수 시스템 특성 연구)

  • Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

A Study on the Design and Analysis of District Solar Heating and Cooling System with Preheating of Returning District Heating Water (지역난방수 환수 승온방식의 태양열 지역냉난방 시스템 분석)

  • Baek Nam-Choon;Shin U-Cheul;Lee Jin-Kook;Yoon Eung-Sang;Yoon Suk-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.433-437
    • /
    • 2005
  • This study was carried out the design and analysis of solar thermal system with preheating of returning district heating water for the Chung-ju district heating and cooling system. Two different types of solar collectors are used for this system. TRNSYS simulation program was used for the analysis. As a results, the solar system efficiency is $35.8\%$ for the plate type and $45.1\%$ for the evacuated type solar collector in the case of $50^{\circ}C$ for the returning district heating water temperature. The returning district heating water temperature is on of the very important factors that is influence on the system efficiency. So the effect of the returning district heating water temperature on the system efficiency is analyzed in this study.

  • PDF

Development of Rooftop-mounted Smart Solar Power Generation System (IT 융합기술을 이용한 스마트 태양광 발전 시스템 연구)

  • Woo, Deok Gun;Lee, Hyo Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.504-506
    • /
    • 2022
  • The existing rooftop solar power generation systems focus mainly on the development of a fixed system because of system error along with safety problem. Accordingly, it is intended to develop a rooftop mounted smart solar power generation system by adding a solar tracking system and a monitoring system to the existing fixed rooftop solar power generation technology. It plans to develop and commercialize 'Rooftop Mounted Smart Solar Power Generation System' by applying solar tracking system, safety diagnosis and response system, abnormal diagnosis and alarm system, and external device control and monitoring systems.

  • PDF

Test and simulation of High-Tc superconducting power charging system for solar energy application

  • Jeon, Haeryong;Park, Young Gun;Lee, Jeyull;Yoon, Yong Soo;Chung, Yoon Do;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.18-22
    • /
    • 2015
  • This paper deals with high-Tc superconducting (HTS) power charging system with GdBCO magnet, photo-voltaic (PV) controller, and solar panels to charge solar energy. When combining the HTS magnet and the solar energy charging system, additional power source is not required therefore it is possible to obtain high power efficiency. Since there is no resistance in superconducting magnet carrying DC transport current the energy losses caused by joule heating can be reduced. In this paper, the charging characteristics of HTS power charging system was simulated by using PSIM. The charging current of HTS superconducting power charging system is measured and compared with the simulation results. Using the simulation of HTS power charging system, it can be applied to the solar energy applications.

Development of EPS System Based on DSP for Solar Cell Output Characteristics (태양전지 출력특성을 갖는 DSP기반 EPS시스템 개발)

  • Jeong, B.H.;Kang, B.H.;Kim, H.S.;Choe, G.H.;Choi, Y.H.;Kim, J.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.523-525
    • /
    • 2005
  • In this paper, electronic-controlled power supply(EPS) system for solar cell characteristic is proposed to solve various problems and to achieve reliable experimental result on photovoltaic system. This system emulates the solar cell output characteristics, and it can substitute solar cell in laboratory experiment system. New model for solar cell is proposed to realize the EPS system for solar cell, which is based on the interpolation. Both simulation and experiment are executed to show the validity of the proposed EPS system.

  • PDF

Design loads for floating solar photovoltaic system: Guide to design using DNV and ASCE standards

  • Gihwan Kim;Moonsu Park
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • The market of the floating solar photovoltaic system is rapidly growing around the world with the rise of renewable energy that can replace fossil energy. While the floating solar photovoltaic system is operating and being installed in several countries, the system is exposed to the risk in terms of structural safety due to the absence of the proper design guideline. In this paper, design loads suitable for the floating solar photovoltaic system are presented. Utilizing the existing reliable design standards such as ASCE 7-16 (ASCE 7-16 2016) and DNV-RP-C205 (DNV-RP-C205 2010), the appropriate design loads for the floating solar photovoltaic system are presented. The proper load combinations are also presented by putting wave load based on DNV standards (DNV-OS-C101 2015 and DNV-OS-C201 2015) into the load combinations in ASCE standards (ASCE 7-16 2016). We present the load combinations for the allowable stress design and load and resistance factor design, respectively.