• Title/Summary/Keyword: Solar Radiation Analysis

Search Result 516, Processing Time 0.024 seconds

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

A Detailed Survey of Solar Energy Resources for the Construction of Photovoltaic Power Generation Sites in East Asia Areas (태양광발전단지 건설을 위한 동아시아 지역의 태양광자원 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here are the analysis of solar radiation data for East Asia areas. The data, which consist of the global radiation on horizontal surface, were measured at 16 different stations over the South Korea and were estimated by using satellite at 12 different stations over the North Korea from 1982 to 2004. Also the data over the Japan have been collected for 30 years for the period from 1941 to 1970. The Result of the analysis shows that the annual-average daily global radiation on the horizontal surface is $3.55\;kWh/m^2$. We conclude, based on the analysis, that East Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

Evaluation of Solar Energy Resources in East-North Asia Areas (동북아시아 지역의 태양광자원 분석 평가)

  • Jo, Dok-Ki;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.37-42
    • /
    • 2008
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here is the analysis of solar radiation data for East-North Asia areas. The data utilized in the analysis consist of the global radiation on horizontal surface, measured at 2 different stations during 3 years for the period from 2002 to 2004 and estimated using satellite at 27 different stations over the China and Mongolia. Also the measured data has been collected at 16 different stations all of the South Korea and estimated using satellite at 12 different stations over the North Korea from 1982 to 2005. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.57 $MJ/m^2$. We conclude, based on the analysis, that East-North Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

  • PDF

Analysis of solar radiation and simulation of thermal environment in plastic greenhouse - I. Analysis of solar radiation in plastic greenhouse (플라스틱 온실(溫室)의 일사량분석(日射量分析)과 열적환경(熱的環境)의 시뮬레이션에 관(關)한 연구(硏究) - I. 플라스틱 온실(溫室)의 일사량분석(日射量分析))

  • Park, Jae-Bok;Koh, Hak-Kyun
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.22-32
    • /
    • 1986
  • This study was carried out to analyze solar radiation in plastic greenhouse which is covered with polyethylene or polyvinyl chrolide film. A computer model for solar radiation analysis in the plastic greenhouse was developed and solar gain factors for E-W and N-S oriented plastic greenhouse in the greenhouse farming area during winter were investigated. Solar gain factors for E-W plastic greenhouse were 60 to 75 percent which were 10 to 15 percent higher than those for N-S plastic greenhouse from November to January. However, the values were apparently decreased in February and reversed in March, showing 3 to 5 percent higher in E-W plastic greenhouse. About 67 to 72 percent of the total solar radiation was attributed to the south-directed wall and roof for the E-W plastic greenhouse and about 30 percent through walls and 60 percent through roofs for the N-S plastic greenhouse.

  • PDF

A Detailed Survey of Solar Energy Resources in East Asia Areas (동아시아 지역의 태양에너지 자원 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.150-153
    • /
    • 2008
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here are the analysis of solar radiation data for East Asia areas. The data, which consist of the global radiation on horizontal surface, were measured at 16 different stations over the South Korea and were estimated by using satellite at 12 different stations over the North Korea from 1982 to 2004. Also the data over the Japan have been collected for 30 years for the period from 1941 to 1970. The Result of the analysis shows that the annual-average daily global radiation on the horizontal surface is 3.55 kWh/$m^2$. We conclude, based on the analysis, that East Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

  • PDF

Analysis of Direct and Diffuse Radiation in Plastic Greenhouse (플라스틱 하우스의 직달(直達) 및 산란(散亂) 일사량(日射量) 해석(解析))

  • Koh, Hak-Kyun;Kim, Moon-Ki;Kim, Yong-Hyeon
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.13-24
    • /
    • 1989
  • Direct and diffuse components of solar radiation were measured inside and outside a single-span plastic greenhouse. To analyze the direct solar radiation inside the plastic greenhouse, the cross-section of the greenhouse was assumed to be circular. Then the direct solar radiation transmitted into the greenhouse was calculated theoretically, and compared with the experimental measurements. The results are summarized as follows: (1) The transmissivities of total solar radiation were about 65% on cloudy days and 50% on clear days. For cloudy days, the transmissivity of the total solar radiation was regarded as the transmissivity of sky diffuse radiation. (2) The ratio of the inside effective scattered component of direct solar radiation to the diffuse radiation was 60-65%. (3) It appeared that the seasonal variation of the transmissivity of total solar radiation was adversely affected by the transmissivity of direct solar radiation and the effective scattered coefficient. But the effect of the transmissivity of direct solar radiation was dominant factor. (4) Computer simulation showed that the inside direct solar radiation was decreased as the floor of the plastic greenhouse was higher. (5) The predicted value of the inside direct solar radiation was 3.3% to 29.0% higher than the measured value.

  • PDF

Study on Temperature Load of Curved Steel Box Girder Bridges (곡선강박스거더교의 온도하중에 관한 연구)

  • Kim Sang-Hyo;Cho Kwang-Il;Hong Ju-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.20-27
    • /
    • 2005
  • Solar radiation causes non-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Especially in cases of curved steel box girder bridges, non-uniform temperature distribution due to solar radiation can reduce bridge life and serviceability when combined with another load combination. In this study, the method for predicting the temperature distribution of curved bridges developed by Kim et al., was used to predict the non-uniform temperature distribution which served as a basis for structural analysis of 3-D bridge behavior. In order to seek the most unfavorable conditions of solar radiation, observation data from the Korea Meteorological Administration for solar radiation were analyzed. The region of the most high solar radiation condition was selected and its one year variation of the solar radiation data was considered. From this analysis, the most unfavorable solar radiation condition with lower solar altitude and intense solar radiation was selected. Based on the selected solar radiation condition, structural behavior of curved bridges with diverse bridge direction, span length, radius and support conditions are analyzed.

  • PDF

Comparison and Analysis of Radiation Environment between Downtown and Suburban Area during Summer Season (대구 도심과 인근 교외지역의 하절기 복사 성분 특성 연구)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.105-116
    • /
    • 2014
  • The objective of this study was to compare and analyze of radiation environment between downtown and suburban area by observation of short, diffuse and long-wave radiation during summer season. The followings are main results from this study. 1) The trends of long-wave radiation is increasing from May to August and the variation of daily range is decreased. It is confirmed that the temperature was closely relevant to long wave radiation. 2) During observation period, suburban area is higher than downtown the value of direct solar radiation. 3) There are much direct solar radiation in suburban area than downtown. But, it was measured much more horizontal solar radiation at the downtown area. From the this result, we can conclude that diffuse radiation play a important role at horizontal solar radiation.

Numerical and experimental investigation on the temperature distribution of steel tubes under solar radiation

  • Liu, Hongbo;Chen, Zhihua;Zhou, Ting
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.725-737
    • /
    • 2012
  • The temperature on steel structures is larger than the ambient air temperature under solar radiation and the temperature distribution on the affected structure is non-uniform and complicated. The steel tube, as a main structural member, has been investigated through experiment and numerical analysis. In this study, the temperature distribution on a properly designed steel tube under solar radiation is measured. A finite element transient thermal analysis method is presented and verified by the experimental results and a series of parametric studies are carried out to investigate the influence of various geometric properties and orientation on the temperature distribution. Furthermore, a simplified approach is proposed to predict the temperature distribution of steel tube. Based on both the experimental and the numerical results, it is concluded that the solar radiation has a significant effect on the temperature distribution of steel tubes. Under the solar radiation, the temperature of steel tubes is about $20.6^{\circ}C$ higher than the ambient air temperature. The temperature distribution of steel tubes is sensitive to the steel solar radiation absorption, steel tube diameter and orientation, but insensitive to the solar radiation reflectance and thickness of steel tube.