• Title/Summary/Keyword: Solar Power System

Search Result 1,687, Processing Time 0.028 seconds

Test and simulation of High-Tc superconducting power charging system for solar energy application

  • Jeon, Haeryong;Park, Young Gun;Lee, Jeyull;Yoon, Yong Soo;Chung, Yoon Do;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.18-22
    • /
    • 2015
  • This paper deals with high-Tc superconducting (HTS) power charging system with GdBCO magnet, photo-voltaic (PV) controller, and solar panels to charge solar energy. When combining the HTS magnet and the solar energy charging system, additional power source is not required therefore it is possible to obtain high power efficiency. Since there is no resistance in superconducting magnet carrying DC transport current the energy losses caused by joule heating can be reduced. In this paper, the charging characteristics of HTS power charging system was simulated by using PSIM. The charging current of HTS superconducting power charging system is measured and compared with the simulation results. Using the simulation of HTS power charging system, it can be applied to the solar energy applications.

A study on hybrid solar LED street light system (하이브리드 태양광 LED 가로등 시스템 연구)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.20-25
    • /
    • 2022
  • In line with the rapid economic growth of many countries, fossil fuel energy sources are also rapidly depleting. Therefore, the price is also rising rapidly, so it is necessary to develop new and renewable energy sources such as hydropower, geothermal power, nuclear power, wind power and solar energy to replace fossil fuel energy in the future. In this study, development of rotating concentrator module system, development of rotating module control control system, development of lamp and charge control controller, configuration and prototype production of rotating concentrating solar LED street light system, efficiency of rotating concentrating solar LED street light, and power production. The research was conducted in the order of evaluation of comprehensive performance tests such as consumption and consumption. As a result, the developed high-efficiency rotation-concentrating hybrid solar LED street light module system has a 50% higher light-gathering efficiency than existing products by tracing sunlight by self-developing a rotation-collecting module on existing solar LED street lamps according to the characteristics of Korea's topography. and the power generation was improved by more than 40%.

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

The Realization of MPPT Controller Using Fuzzy Controller for Photovoltaic System (퍼지제어기를 이용한 태양광발전시스템의 MPPT 제어기 구현)

  • Cho, Geum-Bae;Choi, Yeon-Ok;Baek, Hyung-Lae
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • PV system is easy to operate and maintain than the other power generating system since it generally contains no moving parts, operates silently and requires very little maintenance. A solar cell generates DC power from sunlight whose power is different at any instance according to condition of irradiation and temperature variables. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition This paper describes the experimental results of the PV system contain solar modules and a DC-DC converter(boost type chopper) using fuzzy controller. The experimental results show that the PV system always operates at maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component.

A Study of on a Power Control System for a Solar-Electric Vehicle (태양광-전기자동차의 동력제어시스템에 관한 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.70-76
    • /
    • 2014
  • The intensity of sunlight becomes lower when weather conditions change, which affects whether a solar-electric vehicle can be driven on a shady road. The power delivered by solar cells can be vary depending on the amount of shade. As a result, the battery system is often used to compensate for variations in the power delivered by solar cells. Therefore, studies of power control systems for solar-electric vehicles are required. In this paper, mathematical models for such a power control system are studied and important variables are considered. Simulation and test results show that the mathematical model and actual designs developed here would be effective when used with solar-electric vehicles.

A study on solar-wind hybrid power generation system (태양광 및 풍력 하이브리드 발전 시스템에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1226-1231
    • /
    • 2009
  • In this paper, a solar-wind hybrid system is decsribed for Stand-Alone(SA) power generation system. Mostly SA power generation system for ocean facilities composes a solar system. Normally, the output power of solar system is decreased with weather condition as cloudy and rainy. Solar-wind hybrid system can be operated as complement system each other. In this paper, the characteristic simulation of solar and wind is performed by LabVIEW. The hybrid power generation system is designed according to simulation results, and is tested for checking the complement characteristic.

Development of Tracking Solar Power Generation System using PSA Algorithm (PSA 알고리즘을 이용한 추적식 태양열 발전 시스템 개발)

  • Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1115-1116
    • /
    • 2011
  • This paper proposes tracking solar power generation system using position solar algorithm(PSA). The solar power generation is changed power according to solar position due to using solar energy. The solar tracking methods are the program method and sensor method. This paper proposes two-axis tracking solar power generation using program tracking method. The validity of proposed system in this paper is proved through analyzing temperature of solar collect, generating power and efficiency.

  • PDF

A study on the power conversion system using Dye-Sensitized Solar cell (DSC를 활용한 상용전력변환 시스템에 관한 연구)

  • Kim, Jin-Young;Park, Sung-June;Park, Hae-Young;Kim, Woo-Sung;Kim, Hwi-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF

Design and Implementation of Wireless Intelligent Controller for Micro-Inverter in Solar Power Systems (태양광 발전시스템에서 사용하는 마이크로인버터용 무선지능형제어기 설계 및 구현)

  • Han, Seongtaek
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.9-17
    • /
    • 2019
  • Sun power generation systems which use large capacity centralized inverters have loss of power generation due to cloud and building shadows, pollution, cell deterioration, etc. To minimize loss of power generation, decentralized solar power systems using multiple micro-inverters are being proposed as an alternative. A distributed solar power system consisting of a system-connected system uses power line communication to collect data from the micro-inverters. Power line communication has the advantage of using power lines without separate lines for data transmission, but in distributed solar power generation systems that use a large number of micro-inverters, the bit error rate is less reliable due to the phenomenon caused by limited transmission power, high load interference and noise, variable signal attenuation, and impedance characteristics. So we proposed wireless intelligent controller for micro-inverter that is used to build distributed solar power systems. and we design and implement that. Further, the proposed wireless intelligent controller for micro-inverter was used to establish a small-volume solar power plant to check its function and operation.