• Title/Summary/Keyword: Solar Power Plant

Search Result 222, Processing Time 0.026 seconds

A Study on the Development of Plastic Floater for Solar Power Plant on a Body of Water (수상 태양광 발전을 위한 플라스틱 부유체 개발에 관한 연구)

  • Jeong, Kwang-Soo;Jung, In Jun;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.283-290
    • /
    • 2020
  • In this study, a floater was developed for a frame-type solar power plant. The floater supports the frame and the solar panels. A finite element analysis was performed to design its shape and thickness, and the floater was manufactured by a rotational molding method using linear low-density polyethylene. It was found that the floater did not cause collapse and it maintained its stiffness even at 4 times the maximum load of 322.7 kgf. To perform a long-term compression test, a weight-type load application device that uses gravity was designed and manufactured. The amount of compressive deformation was measured for 7 days, and a long-term deformation equation was obtained. Even under small loads, continuous deformation was observed. However, the 10-year deformation amount for a constant load of 100 kgf was predicted to be small at about 4.64 mm. As a result, it was found that the developed floater could be used in a solar power plant on a body of water.

Designing a Sustainable Energyscape - Based on the 'Sun-Garden' Project in Solaseado Solar Power Plant, Haenam - (지속 가능한 에너지스케이프의 설계 - 해남 솔라시도 태양광 발전단지 내 '태양의 정원' 설계안을 중심으로 -)

  • Kim, Bo kyung;Lee, Byung Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • This study is based on the design project of 'Sun-Garden' within the Solaseado Solar Power Plant located in Solaseado, which is a New City being developed in Haenam, Jeollanam-do. The purpose of this study is to create an integrated and sustainable energyscape that harmonizes energy infrastructure with the natural environment, while supporting the city's carbon neutrality agenda. To achieve this, design principles were established by considering three key aspects. The first aspect is economic, which seeks to create multifunctional spaces that integrate nature and technology, pursuing long-term sustainability while generating additional economic value. The second aspect is natural, emphasizing the creation of planting environments that conserve and enhance ecosystems, introduce region-specific species, and maintain ecosystem services and sustainable resource use. The third aspect is landscape, offering sensory and educational experiences to visitors and functioning as a landmark that symbolizes the carbon-neutral garden city of Solaseado through the aesthetic harmony of nature and technology. Through the creation of the 'Sun-Garden,' the Solaseado Solar Power Plant exemplifies a sustainable energyscape development model that merges economic, environmental, and landscape aspects beyond the conventional energy production facility. This project is expected to provide guidelines and implications for future energy infrastructure design, contributing to global energy transition efforts.

Characteristic Evaluation of Bifacial Solar Module Power Plant Using Back Sheet as Reflective (백시트를 반사재로 이용한 양면태양광 발전시스템 특성평가)

  • Kim, Hyun Jun;Jho, Min Jae;Cha, Hyang Woo;Kim, Kwang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.112-116
    • /
    • 2022
  • The demand for a rear reflective material is continuing according to the expansion of the bifacial soar module and the effect on the re-reflection of the ground using a back sheet that is not used due to the increase in the supply of the bifacial solar module was confirmed. For analysis, a bifacial solar module with an output of 445W was connected to a single inverter of 49.84kW, and analysis of each two inverters was carried out. In the analysis of the results, it was confirmed that the generation amount increased by 5.25% compared to the case where the back sheet reflective film was not installed and it was confirmed that the increase in the generation amount was the noon time when strong solar radiation was irradiated, not the time of sunrise and sunset.

The practical operating evaluation of the grid connected PV power system (계통연계형 태양광발전시스템의 실증운전 평가)

  • Kim, Eui-Hwan;Ahn, Kyo-Sang;Lim, Hee-Chun
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.72-77
    • /
    • 2008
  • The purpose of this paper is to explain the real characteristics of generation system of large scale power system of high voltage the grid connected PV power system for electricity industry. Main system is made up PCS in the class 150kVA. and we studied commercial operation in Korea-Western Power Company,(Tae-An headquarter) with the capacity of module is 122.5 $kW_p$. On the average, power plant utilities' utilization is 12.71 percent and consumption rate is 6.66 percent. We operated normally since 25th, August 2005 without any other problems.

LED array design for optimal combination of plant grown (식물재배를 위한 최적LED 배열조합설계)

  • Lee, Sungwon;Park, Sekwang
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.

A Review on the Agri-voltaic and Fence PV System

  • Hasnain, Yousuf;Lee, Koo;Young Hyun, Cho
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2022
  • Solar energy is rapidly being utilized to generate power in Europe and other countries, but the environmental effect of building and operating solar farms is not fully understood. The building of a solar park demands the removal of certain vegetation and the leveling of the land. Solar energy infrastructure may involve considerable landscape change, altering soil biological processes and influencing hydrologic, carbon and vegetative dynamics. To rebuild the solar PV facilities soils, inherent plant fields might require to be re-established. Within the scope of this research, we presented an analysis of the effects that were caused by the solar farm.

A development of the maintenance function for the solar power plant based on IoT (IoT 기반의 태양광 발전소 유지보수 기능의 개발)

  • Nam, Kang-Hyun;Jeong, Moon-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1157-1162
    • /
    • 2015
  • The maintenance function of Solar power plant is configured with Sensor devices, Gateway, and Maintenance Function Platform. In this paper, we designed gateway resource tree and service scenario to fit the Maintenance Function and demonstrated appropriate operation of the maintenance service through intelligent functional modeling.

Tracking Control of Solar Power Plant Inverter using Model Predictive Control of Laguerre Functions (LMPC를 이용한 태양광발전소 인버터의 추종 제어)

  • Cho, Uk-Rae;Cha, Wang-Cheol;Park, Joung-Ho;Kim, Jae-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.106-111
    • /
    • 2014
  • Currently, the commonly used method for PWM(Pulse Width Modulation) Inverter of the Solar Power Plant. However, the limit of the developing performance to the non-linear and switch devices of the Inverter. Therefore, we propose a model predictive control techniques applied to Laguerre functions. LMPC(Laguerre functions model predictive control) reduces the number of computations made and so online implementation becomes possible where traditional MPC would have fail. In this paper, we comment on the appropriate scope and functions degree of the LMPC inverter control. The simulation results from MATLAB are also provided.

Design and Performance Prediction of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리수를 이용한 소수력발전소 설계 및 성능예측)

  • Lee, Chul-Hyung;Park, Wan-Soon;Kim, Won-Kyoung;Kim, Jeong-Yeon;Chae, Kyu-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.78-83
    • /
    • 2013
  • A methodology to predict the output performance of small hydro power plant using treated effluent in waste water treatment plant has been studied. Existing waste water treatment plant located in Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. .Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the flow duration characteristics of small hydropower plant for waste water treatment plant have quite differences compared with small hydropower plant for the river. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in waste water treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed. It was found that the models developed in this study can be used to decide the design performance of small hydropower plant for waste water treatment plant effectively.

Analysis of HFC-245fa organic Rankine cycle for geothermal power generation (지열 발전을 위한 HFC-245fa 유기 랭킨 사이클의 성능해석)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Yoon, Hyung-Kee;Lee, Young-Soo;Ra, Ho-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, an ORC (Organic Rankine Cycle) is investigated for a low-temperature geothermal power generation by a simulation method. A steady-state simulation model is developed to analyze cycle's performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump are modelled by an isentropic efficiency. Simulations were carried out for the given heat source and sink inlet temperatures, and given flow rate that is based on the typical power plant thermal-capacitance-rate ratio. HFC-245fa is considered as a working fluid of the cycle. Simulation results, at the given secondary working fluids conditions, show that even though the power can be presented by both the evaporating temperature and the turbine inlet superheat, it depends on the evaporating temperature primarily.

  • PDF