• Title/Summary/Keyword: Solar PV Generation

Search Result 331, Processing Time 0.03 seconds

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.

Change of Amount of Power and Utilization Rate for Photo-Voltaic System (태양광 발전 시스템의 발전량 및 이용률 변화)

  • Mi-Yong Hwang;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.403-407
    • /
    • 2023
  • In this paper, in order to investigate the efficiency of solar power generation system operation, we have studied operation cases such as generation amount, utilization rate, and generation time, and the following conclusions were obtained. The amount of power generation in 2017 was 1,311.48 MWh, and the amount of power generation in 2018 was 1,226.03 MWh. In 2021, 1,184.28 MWh was generated, and 90.30% compared to 2017, and the amount of power generation decreased by 1.94% every year. The deterioration of photovoltaic modules could be seen as one cause of the decrease in power generation. 1,977.74 MWh was generated in the spring, and 1,621.77 MWh was generated in the summer. In addition, 1,478.87 MWh was generated in the fall, and 1,110.55 MWh was generated in the winter, showing a lot of power generation in the order of spring, summer, fall, and winter. From 2017 to 2022, the seasonal utilization rate, daily power generation time, and daily power generation were investigated, and it could be seen that the spring utilization rate varies from 19.29% to 16.99%. It could be seen that the daily generation time in winter decreased from 2.67 hours to 2.13 hours, and in spring it generated longer than spring from 4.63 hours to 4.08 hours. In addition, the daily power generation in winter also decreased from 2.67 MWh to 2.13 MWh, and in spring it decreased from 4.63 MWh to 4.08 MWh, but it could be seen that it is more than in winter.

Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure (철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • When designing photovoltaic power plants in Korea, the prediction of photovoltaic power generation at the design phase is carried out using PVSyst, PVWatts (Overseas power generation prediction software), and overseas weather data even if the test site is a domestic site. In this paper, for a comparative study to predict power generation using weather information, domestic photovoltaic power plants in two regions were selected as target sites. PVsyst, which is a commercial power generation forecasting program, was used to compare the accuracy between the predicted value of power generation (obtained using overseas weather information (Meteonorm 7.1, NASA-SSE)) and the predicted value of power generation obtained by the Korea Meteorological Administration (KMA). In addition, we have studied ways to improve the prediction of power generation through comparative analysis of meteorological data. Finally, we proposed a revised solar power generation prediction model that considers climatic factors by considering the actual generation amount.

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

The Operating Characteristics Analysis of Utility Interactive PV Power Generation System (계통연계형 태양광 발전시스템의 운전특성 분석)

  • 이현우;고강훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.23-30
    • /
    • 2003
  • This paper analyzes the characteristic of utility connection type solar power generation system which it is available to connect the utility. And the operation characteristic of this system is compared and analyzed when it is operated in the real system. The constructional and operational problem were obtained by that result. Overcoming that defect is that finding the proper place to be well operated and to find the best place for getting the sunshine data. This method could increase the efficiency of the generation system. And more, current OS in operating system and monitoring management couldn't solve the problem so that improving OS and constructing data backup system should be implemented, This paper proposes the plan to solve that defect in the real system.

The Study on Algorithm for Partial shade Compasation of PV (태양광 발전시스템의 부분그늘 보상을 위한 알고리즘에 관한 연구)

  • Koh K. H.;Lee H. W.;Suh K. Y.;Koh H. S.;Moon S. C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • In this paper, compare and analyze existent MPPT algorithms. Existent algorithms have defects which don't generate it in a partial shade or low insolation. Therefore, to supplement it, we design improved IncCond algorithm consisted of a Aux. switch and capacitor with Generation Control circuit which can always obtain maximum generation power at the factor which is reduced generational efficiency by partial shade. Generation Control circuit is method which can always get maximum output power as it regularly controls each voltage of serial connected solar cell. Accordingly, it can improve efficiency and confidence of utility interaction inverter. Construction of system use a low price PIC16F87X. We analyze special character according to system operation through simulation and prove the validity through experiments.

  • PDF

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

A Study on the DC-Link Miniaturization and the Reduction of Output Current Distortion Rate by Reducing the Effect of 120 Hz Ripple Voltage on Photovoltaic Systems (태양광 발전 시스템의 120Hz 리플 전압 영향 감소를 통한 DC-Link 소형화와 출력 전류 왜곡률 감소에 관한 연구)

  • Song, Min-Geun;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.342-348
    • /
    • 2021
  • The PV module of solar power systems requires maximum power point tracking (MPPT) technique because the power-voltage and current-voltage characteristics vary depending on the surrounding environment. In addition, the 120 Hz ripple voltage on the DC-Link is caused by the imbalance of the system voltage and current. The effect of this 120 Hz ripple voltage reduces the efficiency of the power generation system by increasing the output current distortion rate. Increasing the capacity of DC-Link can reduce the 120 Hz ripple voltage, but this method is inefficient in price and size. We propose a technique that detects 120 Hz ripple voltage and reduces the effect of ripple voltage without increasing the DC-Link capacity through a controller. The proposed technique was verified through simulations and experiments using a 1 kW single-phase solar power system. In addition, the proposed technique's feasibility was demonstrated by reducing the distortion rate of the output current.

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data (실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측)

  • Ha, Eun-gyu;Kim, Tae-oh;Kim, Chang-bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.