• 제목/요약/키워드: Solar Heat storage

검색결과 289건 처리시간 0.024초

TMA-물계 포접화합물의 냉각특성과 과냉각 개선에 대한 연구 (A Study on the Cooling Characteristics and Subcooling Improvement of TMA-Water Clathrate Compound)

  • 박설현;김창오
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.85-92
    • /
    • 2014
  • This study carried out experimental on the cooling characteristics of clathrate compound including TMA(Tri-Methyl-Amine ; $(CH_3)_3N$) as a low temperature latent heat storage material. And additive was used for subcooling improvement of TMA-water clathrate compound. The conclusion of above study is as following ; TMA 25wt%-water clathrate compound is shown stable phase change and low subcooling degree. The subcooling was improved in the case ethanol($CH_3CH_2OH$) 0.5wt% is added to TMA 25wt%-water clathrate compound.

다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析) (Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector)

  • 송현갑
    • 태양에너지
    • /
    • 제6권2호
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석 (Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened -)

  • 최동호
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.

관외착빙형 빙축열조의 제빙성능에 관한 연구 (An Experimental Study of Ice-Making Performance on the Ice Storage System using Spiral Tube)

  • 박용주;임광빈;조남철
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2004
  • An experimental investigation was performed to compare ice making characteristics of ice storage system with smooth and spiral tube. During the freezing processes in the shell and tube type ice storage tank with smooth tube, heat resistance of the ice layer caused a decrease in freezing rate. Also, the phenomena of bridging made the increasing rate of ice making less. In order to improve the ice making rate, spiral tube(pitch=6mm) was used in the present study. The ice making rate and the decreasing of bridging for the spiral tube were higher than those for the smooth tube.

병영시설의 태양열급탕시스템에 관한 연구 (A Study on the Solar Water Heating System in the Military Facilities)

  • 김두천;서진석
    • 대한설비공학회지:설비저널
    • /
    • 제11권4호
    • /
    • pp.6-18
    • /
    • 1982
  • The performance of two typical types of solar hot water heating system was tested in Seoul. Types of systems studied are single-tank internal external heat exchanger system and single-tank internal heat exchanger system. Comparing to experimental results, a transient system simulation program was made to analyze the performance of the selected system. The climate data, Standard Weather Year for Seoul, required for the simulation was provided. Computer simulations were used to estimate the effect of significant parameters upon system performance. The followings are obtained. 1. In the domestic solar water Heating system, the value $20-40kg/m^2\;h$ for flow rate through the collector is much better than the recommended value $72kg/m^2\;h$ in the solar heating system. 2. The effectiveness of collector heat exchanger and storage tank size are found to have only a small effect upon system performance. 3. The hot water draw pattern has a significant effect on system performance. A higher system efficiency achieved when draw-off occurred around noon than when it occurred around early morning. Using the above results, the reference solar hot water system which provides $300\ell$ of hot water per day, was selected as a guide for designer. And simplified graphical method was developed based on the modified f-chart method to determine required collector area. When the system design parameters of the proposed system differs from the reference system, required collector area can be calculated from area adjustment factors.

  • PDF

상변화 물질로부터의 열에너지 추출에 관한 연구 - 핀이 부착된 열싸이폰 이용에 관하여 - (Thermal Energy Extraction from Phase Change Material - by Means of Finned Thermosyphon -)

  • 목재균;유재석;김기현
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.5-12
    • /
    • 1988
  • One of the effective means to transfer the heat into and from the energy storage medium is thermosyphon. In this study, a two-phase closed thermosyphon with circular fins was used to extract the thermal energy stored in paraffin wax (Sunoco p-116). Heat transfer characteristics along the heat flow path were investigated as well as the overall performance. Some of the important results are as follows: (1) The temperature distribution of the wax in the radial direction was always maintained fairly uniformly; (2) Compared with bare thermosyphon, the heat transfer rate was vastly improved in the early stage of the experiment; and (3) Heat transfer coefficient between the wax and evaporating section of thermosyphon remained nearly constant during the experiment.

  • PDF

상변화물질을 적용한 건축자재의 에너지절약 가능성 분석 (The Analysis of the Energy Saving Performances of Building Materials using Phase Change Materials)

  • 안상민;황석호;김태연;이승복
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.162-167
    • /
    • 2011
  • Thermal storage plays an important role in building energy saving, which is greatly assisted by the incorporation of latent heat storage in building materials. A phase change material is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, can be storing and releasing large amount of energy. Heat is stored or released when the material changes from solid to liquid. Integration of building materials incorporating PCMs into the building envelope can result in increased efficiency of the built environment. The aim of this research is to identify thermal performance of PCMs impregnated building materials which is applied to interior of building such as gypsum and red clay. In order to analyze thermal performance of phase change materials, test-cell experiments and simulation analysis were carried out. The results show that micro-encapsulated PCM has an effect to maintain a constant indoor temperature using latent heat through the test-cell experiments. PCM wallboard makes it possible to reduce the fluctuation of room temperature and heating and cooling load by using EnergyPlus simulation program. Phase change material can store solar energy directly in buildings. Increasing the heat capacity of a building is capable of improving human comfort by decreasing the frequency of indoor air temperature swings so that the interior air temperature is closer to the desired temperature for a long period of time.

  • PDF

쇼케이스의 실제 운전상태를 고려한 축냉시스템 적용 가능성 평가 기초 연구 (A Feasibility Study for the Application of the Cold-heat Storage System Considering the Real Operation Status of the Showcase)

  • 이동원;김정배
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.52-58
    • /
    • 2012
  • Experimental study was performed to understand the real operation conditions of a showcase working usually in a convenient store and discount store. The purpose of this study was to show the possibility for practical use of cold-heat storage systems being operated for the showcase. To do that, evaporator and condenser temperatures were measured and the compressor electric power consumption were measured simultaneously. To use the ice storage system, the ice making process was typically operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was subcooled using the stored cold-heat after being discharged from the condenser during daytime. So, the cooling performance was increased with the sub-cooling of refrigerant during daytime,hence the actual running time of the compressor could be effectively decreased. Through the experiments, this study showed that the compressor electric power consumption during daytime could be transferred to nighttime for applying the refrigerant sub-cooling. So, for the convenient store, the maximum load transfer rates for each working cooler and showcase were estimated about 31.1% and 19.9% respectively. And for the discount store, the maximum load transfer rates for each refrigeration and freezing showcase were estimated about 34.1% and 49.0% respectively.

MgO를 사용한 고온축열탱크의 성능특성에 관한 연구 (A Study on the Performance Characteristics of the High Temperature Heat Storage Tank using MgO Materials)

  • 조소앙;신창훈;이수상;윤석훈
    • 해양환경안전학회지
    • /
    • 제17권4호
    • /
    • pp.413-418
    • /
    • 2011
  • 최근 화석에너지의 남용으로 인한 지구온난화문제가 인류가 해결해야 할 지상과제로 대두되고 있으며, 본 연구는 이러한 에너지문제의 해결에 도움이 될 수 있는 고온축열탱크의 개발과 그 성능특성에 관한 내용이다. 지금까지 이에 관한 연구는 그다지 활발하지 않았으며, 특히 고온축열탱크에 관한 연구는 매우 드문 실정이다. 본 연구의 목적은 비교적 열물성이 양호하며 가격이 저렴한 물질인 MgO를 현열축열재로 사용하는 고온축열탱크의 개발이다. 이를 위하여 분말 상태의 MgO를 이용하여 축열벽돌을 제작하고, 실험적 방법을 통하여 MgO를 축열재로 사용하는 고온축열탱크의 성능특성에 관하여 연구하였다. 본 연구를 통하여 현열축열재인 MgO의 고온축열 및 방열성능을 확인하였다.

캡슐형 빙축열시스템에 대한 운전 시뮬레이션 및 에너지비용 분석 (Simulation and Energy Cost Calculation of Encapsulated Ice Storage System)

  • 이경호;주용진;최병윤;김상준
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.63-73
    • /
    • 1999
  • Ice storage systems are used to shift the peak load in day time into night time in summer. This paper describes a system simulation of partial ice storage system composed of an encapsulated ice storage tank, a screw compressor chiller, a heat exchanger, and a brine pump. For the system simulation, a one-dimensional model of ice storage tank is developed and validated by comparison with the performance data from measurements of an ice storage tank installed at a building. The control strategies considered in this study are chiller priority and storage priority being used commercially. The system is simulated with design cooling load of 600 RT peak load in design day and with off-design day cooling load, and the electric energy costs of the two control strategies for the same system size are compared. As a result of calculation, the energy consumption in a week for storage priority is higher than that for chiller priority control. However due to lower cost of night electric charge rate, energy cost for storage priority control is lower than chiller priority.

  • PDF