• Title/Summary/Keyword: Solar Fraction

Search Result 147, Processing Time 0.021 seconds

Study on the Performance Analysis of Solar Heating System with Cloud Cover (운량에 따른 태양열 시스템의 성능 분석에 관한 연구)

  • Kim, Won-Seok;Pyo, Jong-Hyun;Cho, Hong-Hyun;Ryu, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1215-1219
    • /
    • 2009
  • In this study, the performance of solar assisted hybrid heat pump system with cloud cover were analyzed by using experimental method in spring season. It was consisted of concentric evacuated tube solar collector, heat medium tank, heat storage tank, heat pump, and so on. As a result, the solar radiation should be maintained over $4.1\;MJ/m^2$ in order to operate solar heating system for heating. Solar heat of collector wasn't affected by ambient temperature, but cloud cover has a big effect to collector efficiency. In addition, the collector efficiency is about 50-60%, and solar fraction is 40% for this system.

  • PDF

A Simulation for the Stratified Thermal Storage System in Residential Solar Energy Application (주거용 태양열 성층축열시스템의 시뮬레이션)

  • Pak, Ee-Tong;Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1991
  • The benefits of thermal stratification in sensible heat storage systems has been considered and studying by several investigators. In this paper, the basic data which is hard to obtain normally through the experiment were obtainable through the computer simulation. The major objectives of the study were to assess the benefits of stratified storage in residential solar water heating application and to suggest the optimum design parameters. From the computer simulation, following results were obtained. 1. The solar load fraction increases with increasing the number of tank segments. In these simulation, the magnitude of the improvement was about 10%. 2. The solar load fraction increases when the ratio of diameter to height of the tank(H/D) increases to 3, but H/D exceed 3 then, the solar load fraction decreases. In these simulation, the magnitude of the improvement was about 3%. 3. Increasing the collector flow rate slightly improved the performance of the mixed storage system(Node=1). But, for the stratified storage system(Node=N), the solar load fraction increases with decreasing flow rate until the point is reached at which the collector outlet temperature reaches the boiloff limit of $100^{\circ}C$ over some portion of the simulation period.

  • PDF

Active Solar Heating System Design and Analysis for the Zero Energy Solar House (제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석)

  • Baek, N.C.;Yoo, C.K.;Yoon, E.S.;Yoo, J.Y.;Yoon, J.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank (태양열이용 Baffle형 축열탱크를 갖는 온수난방시스템의 열성능 해석)

  • Suh, Jeong-Se;Yi, Chung-Seub
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.768-773
    • /
    • 2009
  • A numerical study has been performed to investigate the thermal Performance of Solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

  • PDF

Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 성능특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank (태양열이용 Baffle식 축열조를 갖는 급탕난방시스템의 열성능 해석)

  • Suh, Jeong-Se;Yi, Chung-Seub;Yoon, Ji-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.805-811
    • /
    • 2010
  • A numerical study has been performed to investigate the thermal performance of solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 2 : Simulation) (열교환코일 내장형 태양열 축열조의 성능향상 (제2보 시뮬레이션))

  • Kim, Jong-Hyun;Li, LongJie;Lee, Uk-Jae;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.361-366
    • /
    • 2016
  • As an alternative of well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and verified a superior thermal stratification in a tank, which results in increased collector efficiency and solar fraction. But the phenomenon of temperature reversal was often experimentally observed in the tank, so a revised control was successfully applied which is to heat only lower coil using three way valve if temperature reversal occurs and to operate the collector with low flow rate when the condition of solar radiation is not good. In the present study, using TRNSYS we compared the existing lower heating and the proposed lower and upper heating with a control preventing temperature reversal. The results showed that the proposed method has an increase of collector efficiency by 5.1% and solar fraction by 3.2%.

An Experimental Study on the Solar Hot Water Heating System for the Dormitory of University (기숙사 태양열 급탕시스템의 열성능에 관한 실증연구)

  • Shin, U-Cheul;Baek, Nam-Choon;Kwak, Hee-Yeul;Ju, Hyunlo-Lo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • The Purpose of this work is to investigate a long-term thermal performance of active solar hot water heating system for the dormitory of university. For this, monitering system including temperature sensors, flow-meters was installed in this system. Measurement was continued for 13 months between April 1st 2004 and May 31th 2005. As results, hot water demand, daily and monthly hot water load distribution which are necessary for the solar system design were suggested. Also thermal stratification in solar buffer tank was observed in the point of increasement of system efficiency. The yearly solar fraction and system efficiency of this system are about 29.5% and 44.9% respectively.

Study on the Performance Characteristics of the Solar Hybrid System with Heat Pump Operating Temperature during Winter Season (겨울철 열펌프 작동온도에 따른 태양열 하이브리드 시스템의 성능특성에 관한 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.821-827
    • /
    • 2010
  • Study on the performance characteristics of the solar hybrid system with heat pump operating temperature during winter season has performed by using an experimental test. The system performance and operating characteristics with the heat pump operating temperature, hour and load condition were investigated and analyzed. As a result, the hot water temperature was significantly affected by the heat pump operating temperature at the morning(time 1) and noon(time 2). However, hot water temperature was set by the radiation quality and collecting operation hour at the afternoon(time 3). In addition to the solar fraction was decreased for the high heat pump operating temperature because the heat pump operated with a long operating time and short operating period.

Enhancement of Stratification for Solar Water Storage Tank with Spiral Jacket and Coil(Part 2 Simulation) (나선유로에 의한 태양열 축열조 성층화 촉진(제2보 시뮬레이션))

  • Lee, Seong Hoon;Son, Hyo Seok;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • We have performed experiments to enhance the stratification in a storage tank in order to raise the collector efficiency and solar fraction in solar thermal systems. The storage tank with a spiral jacket in the side wall has a scroll-shaped heat exchanger coil added to the upper part. The performance was compared between only the side and upper-side heating part through simulation using TRNSYS under the same weather conditions and initial conditions. As a result, the upper-side heating has a 4.2% advantage in solar fraction, but almost no increase in collector efficiency.