• Title/Summary/Keyword: Solar Energy Utilization

Search Result 211, Processing Time 0.026 seconds

A Study on the Development of Thermal Storage Units for Efficient Utilization of Solar Systems (태양열 시스템의 활용성 제고를 위한 축열 장치 개발에 관한 실험적 연구)

  • Chun, Won-Gee;Lee, Jae-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 2002
  • This study has been carried out to design a number of storage units which could improve the utilizability of solar energy by offering convenient means to store it. The proposed units are systematically tested to establish their reliability in actual operations. One of the prominent features of the present storage units is that each design is meant to drastically improve the thermal response of solar systems which would definitely offer extreme convenience to whoever uses it. Also sought in the present study is to elicit ideal operating conditions during the storage and extraction phases of solar energy once it is delivered to the storage unit. The present study has confirmed the potential use of the proposed units with their applicability in capitalizing the sun's energy.

Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules (스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구)

  • Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Multi-Objective Evaluation for Hybrid Use of Natural Energy in Power System (자연에너지 복합 이용시스템에 대한 다목적 평가)

  • Bae, Sang-Hyun;Lee, Jae-Youn
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 1991
  • Research and development works on practical application of natural energy utilization systems involving solar, wind and sea wave energies are under promoting for the purpose of improving the energy consumption structure. These natural energies, made available with the use of relatively simple apparatus, are clean economically efficient and highly effective in the conservation of environment. However, these natural energies also have low energy density, randomness and regional variations. To compensate for these characteristics, hybrid utilization of solar and wind energies is currently under study. The introduction of a plural number of the natural energy hybrid utilization systems into a specific area will affect the economic efficiency, reliability and environmental conservation. Evaluation method of such effects has been examined in this study. The present method consisted of the steps described below. First, available energy was calculated from insolation distribution and wind velocity distribution in the specified area, and then the effect on the configuration of the power system load was obtained. This was followed by the determination of the optimal power dispatch over the specified period and by evaluations in light of economic efficiency, reliability and environmental indices.

  • PDF

A Study on the Dynamic Performance of a Solar Absorption Cooling System (태양열 흡수식 냉방 시스템의 동특성 연구)

  • Baek, N.C.;Lee, J.K.;Yang, Y.S.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 1998
  • Solar energy has been experiencing renewed interest because of the recent economical crisis in Korea. Absorption cooling is one of the promising solar energy utilization technologies. In this study the dynamic performance of a solar driven absorption cooling machine(SDACM) was numerically investigated. The simulated machine is a commercially available water/LiBr single effect absorption chillers driven by hot water from solar collectors. The present study has been directed to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collector, a hot water storage tank, fan coil units, and the air-conditioned space. The operation of the system was simulated for 9 hours in varying operation conditions. The variation of temperature and concentration in the system components, and that of heat transfer rates in the system were obtained. It was also found that the room temperature was maintained near the desired value by controlling the mass flow rate of hot water.

  • PDF

Study on the Utilization of Public Data for the Introduction of Solar Energy in Rural Areas (농촌지역 태양광에너지 도입을 위한 공공데이터 활용방안)

  • Kim, Sang-Bum;Kim, Yong-Gyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.175-182
    • /
    • 2023
  • The purpose of this study, the trend of renewable energy, domestic and foreign renewable energy policies, and the flow of the legal system related to renewable energy location were identified, and a location analysis using public data was studied when solar energy was located. First, renewable energy is leading to energy conversion by reducing the proportion of existing fossil fuel-centered energy sources in the global trend and increasing the proportion of renewable energy, an eco-friendly energy source, and changing the institutional and market structure. Second, large-scale solar energy power plants are installed and operated in rural areas where there is no change in insolation and land prices are cheaper than in urban areas where there are many changes in insolation due to surrounding high-rise buildings and street trees. Third, if a preliminary location review is conducted using public data at this time, it will be easy to identify the optimal location for area and size calculation. Fourth, the solar energy location functional area was studied in area A, and the total area of the target area was 624.5km2, with 392.7km2 and 62.9% of the avoidance area where solar power cannot be located.

Domestic Status of Solar Thermal Collectors and Hot Water Heaters (태양열 집열기 및 온수기에 대한 국내 현황)

  • Kim, Seok-Jong
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.84-88
    • /
    • 1991
  • In this technical status report, domestic solar makers and dealers for thermal collectors and hot water heaters are surveyed. The characteristics and specifications of their items are also classified and discussed. Collectors and hot water heaters are the key part of solar thermal systems which have been developed under the national policy for the development and utilization of new and renewable energy resources. This report provides the current domestic status of solar collectors which may be a good reference for the solar industry and related organizations.

  • PDF

Drying of Crops with Solar Heated Air -Drying of Rough Rice - (태양열을 이용한 농산물건조에 관한 연구 (I)-벼의 건조에 대하여)

  • 이문남;금동혁;류능환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.100-113
    • /
    • 1978
  • Drying grain with conventional artificial drying methods requires great quantities of petroleum fuels. Depletion of fossil fuel increases the need of the utilization of solar energy as an alternative to petroluem fuels for drying grain , an energy intensive agricultural operation. Many techniques for the utilization of solar energy in grain drying have been developed, however, there are many problems in adopting solar energy as an energy sources for drying grain. Futhermore, very little research has been done on solar grain drying in Korea. This study was conducted to evaluate the availability of solar energy for drying of rough rice in Chuncheon, Suweon, and Jinju areas based on 50year meteorological data, and to analyze experimentally the performance of a solar air collector for dying grain, and to find the effects of solar heated air compared to unheated air on the rate of drying and energy consumption required for drying of rough rice. The results of this study was may be summarized as follows ; 1. Monthly average daily total radiation on a horizontal surface in October was 260.6 ly/day for Chuncheon, 240.3 ly/day for Suweon , and 253.4 ly/day for Jinju area, respectively. 2. the ratio of monthly average daily diffuse radiation to daily total radiation on a horizontal surface was approximately 0.41 for Chuncheon, 0.45 for Suweon, and 0.44 for Jinju area, respectively. 3. Although the statistical distribution curves of daily total radiation for the three locations were not identical , the differences among them were not large and may be neglected for many practical purposes. 4. I was estimated that the optimum tilting angle of the collector in October was approximately 46 degrees for Chuncheon and Suweon and 45 degrees for Jinju. 5. The ratio of the total radiation on a optimum tilting plane to that on a horizontal plane was estimated to be 1.36 for Chuncheon, 1.31 for Suweon, and 1.27 for Jinju , respectively. 6. The collection efficiency of the solar air collector ranged from 47. 8 to 51. 5 percent at the air flow rates of 251. 1-372.96 $m^3$/hr. High efficiency remained nearly , constant during the best sunshine hours, 10 a.m. to 2 p.m. and decreased during other hours. More energy was collected as the air flow rate incresed. 7. The average temperature rise in the drying air from the solar collector for the test period varied from $6.5^\circC$ to $21.8^\circC$ above the ambient air temperature. 8. Solar-dried rough rice averaged 13.7 percent moisture (w.b.) after 130 hours of drying with the air flow rate of 1. 64 ccm/$m^3$, and rough rice dried with natural air averaged 15.1 percent moisture (w.b.) after 325 hours of drying with the same air flow rate. 9. Energy saving of 2.4 kwh per $m^3$ percentage point of moisture removed was obtained from solar heated air drYing. The solar bin used 53.3 percent less energy per percentage point of moisture removed than the natural air bin.

  • PDF

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.