• Title/Summary/Keyword: Solar Concentration

Search Result 547, Processing Time 0.03 seconds

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Study on Indium-free and Indium-reduced thin film Solar absorber materials for photovoltaic application

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, we report the research highlight on the preparation and characterization of Indium-free $Cu_2ZnSnSe_4$ and Indium-reduced $CulnZnSe_2$ thin films in order to seek the viability of these absorber materials to be applied in thin film solar cells. The films of $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ were prepared using mixed binary chalcogenides powders. It was observed that Cu concentration was a function of substrate temperature as well as CuSe mole ratio in the target. Under an optimized condition, $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ thin films grew with strong [112]. [220/204] and [312/116] reflections. Both $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ films were found to exhibit a high absorption coefficient of $104^4cm^{-1}\;Cu_2ZnSnSe_4$ film showed a band gap of 1.5eV which closes to the optimum band gap of an ideal solar absorber for a solar cell. On the other side, an increase of optical band gap from 1.0 to 1.25eV was found to be proportional with an increase of Zn concentration in the $CulnZnSe_2$ film. All films in this study revealed a p-type semiconductor characteristic.

  • PDF

Electrical and Structural Properties of Microcrystalline Silicon Thin Films by Hot-Wire CVD (Hot-Wire CVD법에 의한 microcrystalline silicon 박막의 저온 증착 및 전기 구조적 특성)

  • 이정철;유진수;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.387-390
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}$c-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below 300$^{\circ}C$. The SiH$_4$ concentration[F(SiH$_4$)/F(SiH$_4$).+(H$_2$)] is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}$c-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}$c-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of B$_2$H$\_$6/ to SiH$_4$ gas. The solar cells with structure of Al/nip ${\mu}$c-Si:H/TCO/g1ass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Analysis of Current-voltage Characteristic Curve for the Solar Cell using MicroTec Tool (MicroTec을 이용한 태양전지 전류-전압 특성곡선 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1045-1050
    • /
    • 2009
  • The current-voltage characteristics of solar cell has been analyzed using MicroTec in this paper. The current-voltage characteristics represents a efficiency of solar cell. The part of metal contact is doped highly, but active region is doped lowly. We have investigated the current-voltage characteristics according to variation of doping concentration from $10^{14}cm^{-3}$ to $10^{17}cm^{-3}$. We has also determined the doping concentration to obtain the maximum efficiency of solar cell, and analyzed this current-voltage characteristics.

Organic Solar Cells with CuO Nanoparticles Mixed PEDOT:PSS Buffer Layer (산화구리 나노입자를 혼합한 PEDOT:PSS 박막을 이용한 유기 태양전지)

  • Oh, Sang Hoon;Heo, Seung Jin;Kim, Hyun Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • In this research, nanocomposite layers consisting of poly (3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) and CuO nanoparticles were investigated as hole transport layers in organic solar cells based on poly (3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor. The addition of CuO nanoparticles to PEDOT:PSS layer improved the solar cell performance with 0.5% CuO nanoparticle concentration. At optimized concentration, CuO mixed PEDOT:PSS films had good electrical ($4.131{\Omega}{\cdot}cm$) and optical (transmittance > 90%) properties for using hole transporting layer. We investigated that improved solar cell performance with CuO nanoparticles mixed PEDOT:PSS films.

A Study on the ZnO Anti-reflection Layer of Dye Sensitized Solar Cell using Zinc Nitrate Solution (Zinc nitrate 용액을 이용한 염료감응형 태양전지 반사 방지막에 관한 연구)

  • Choi, Jin-Ho;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Kim, Byung-Man;Kim, Hee-Je;Prabakar, Kandasamy;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.705-710
    • /
    • 2012
  • An anti-reflection layer (AR) is used in the solar cell to improve the amount of the irradiated light, resulting in the improvement of the performance of the solar cell. In this study, the zinc oxide (ZnO) AR is applied to the dye-sensitized solar cell (DSC) by using zinc nitrate solution. The conditions such as solution concentration and sintering temperature for fabricating the ZnO AR are changed to optimize the performance of the AR. As a result, the best performance is shown when the zinc nitrate solution with 100mM concentration is used and the sintering temperature is $600^{\circ}C$. And then, the ZnO AR formed with these optimal conditions is applied to the DSC. Consequently, a DSC with a ZnO AR had an increased current density up to 13.86$mA/cm^2$ and an enhanced efficiency of 6.32%.

Yearly Variation and Influencing Factors of Ozone Concentration in the Ambient Air of Seoul (서울시 대기중 오존오염도의 연도별 변화와 그 영향인자 분석: 광화문 지역을 중심으로)

  • Lee, Ki-Won;Kwon, Sook-Pyo;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.107-115
    • /
    • 1993
  • This study was carried out to find the characteristics of surface ozone concentration data obtained during 1988-1991 by the Korea Ministry of Environment. Seasonal data (spring, summer, autumn and winter) wre obtained in May, August, November and February respectively at Kwanghwamun in Seoul. The pollutants analyzed in this study are $SO_2, TSP, CO, NO, NO_2 and NO_2/NO$. Atmospheric factors such as solar radiation, wind speed, relative humidity, cloud amount and atmospheric temperature are also analyzed. The influence of pollutants and atmospheric factors that affect ozone concentration were analyzed by statistical method. The results are summarized as follows : 1. The ozone concentration varied seasonally. The maximum values were 23 ppb in spring, 33 ppb in summer, 16 ppb in autumn and 13 ppb in winter. So the seasonal ozone value was highest in Summer. 2. Te diurnal concentration of ozone was highest during 2-4 P. M. and was very low in the morning and evening. 3. The maximal correlation coefficients of each season between ozone concentration and the influencing pollutants or atmospheric factors asr as follows ; a. spring, r = 0.44(solar radiation) b. summer, r = -0.59(relative humidity) c. autumn, r = -0.55(relative humidity) d. winter, r = -0.58($NO_2$) 4. The major factor affecting the ozone concentration in spring was solar radiation, Relative humidity was the first affecting factor in summer, autumn and $NO_2$ concentration was dominant in winter.

  • PDF

Solar Photochemical Degradation and Toxicity Reduction of Trichloroethlylene (TCE) (Trichloroethlylene (TCE)의 광화학적 분해 및 독성 저감)

  • Park, Jae-Hong;Kwon, Soo Youl
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.244-249
    • /
    • 2006
  • The photocatalytic degradation of trichloroethlylene (TCE), has been investigated over $TiO_2$ photocatalysts irradiated with solar light. The effect of operational parameters, i.e., initial TCE concentration, $TiO_2$ concentration, pH and additives ($H_2O_2$, persulphate($S_2O{_8}^-$)) on the degradation rate of aqueous solution of TCE has been examined. The results presented in this work demonstrated that degradation of the TCE with $TiO_2/solar$ light was enhanced by augumentation in $TiO_2$ loading, pH, and adding additives but was inhibited by increase in initial TCE concentration. Also individual use of $H_2O_2$ was far more effective than using persulphate in TCE removal efficiency. Furthermore, the relative toxicity with a $solar/TiO_2/H_2O_2$ system was about 15% lower than with a $solar/TiO_2/persulphate$ system and about 35% lower than with a $solar/TiO_2$ system within a reaction time of 150 min, respectively.

  • PDF

A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System (Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.