• Title/Summary/Keyword: Solar Cell Robot

Search Result 19, Processing Time 0.034 seconds

Vibration Control of the Hybrid Type Solar Cell Substrate Handling Robot (하이브리드 타입 솔라셀 기판 이송용 로봇 진동 제어)

  • Park, Dong Il;Park, Cheolhoon;Park, Joo Han;Cheong, Kwang Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.909-913
    • /
    • 2013
  • Various types of large substrate handling robots are used in the thin file solar cell manufacturing line as well as LCD or PDP production line. Because the robot handles the heavy substrate at high speed, there are some issues such as vibration control and the optimal design of arms and forks. As the substrate becomes larger and heavier, robot systems are also larger and the vibration issue of the robot end-effector becomes more important. In the paper, we established the robot modeling and the control architecture including the flexible part such as forks. Then, we performed dynamic simulation in the various condition and analyzed the characteristics of the fork vibration. We can reduce the vibration using the trajectory planning and input shaping algorithm and it was proved by experiment.

Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle (에너지 효율적 트리로터 수직이착륙 무인항공기 개발)

  • Park, Hee-Jin;Kong, Dong-Uck;Son, Byung-Rak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

Design and Implementation of a Bidirectional Power Supply Charger Using Super Capacitors and Solar Panel for Robot Cleaner Applications (슈퍼 커패시터 및 태양전지를 이용한 로봇청소기용 양방향 충전시스템 설계)

  • Zheng, Tao;Piao, Sheng-Xu;Kwon, Dae-Hwan;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.97-102
    • /
    • 2016
  • In this paper, a bidirectional power supply charger is proposed. This system used a solar cell panel to generate electricity and used super capacitors to store these energies, which can be used for the robot cleaner or some other electronic products. This system include a phase-shift controlled bidirectional dual active bridge (DAB) converter, solar panel super capacitors and DSP controller. In the daytime it can charge to the super capacitors to store the energy generated by the solar cell panel and in the night it will release the energy stored in the super capacitors to loads. A prototype of the proposed bidirectional power supply charger system was designed which can achieve 18V to 30V input, 10V/20W output to super capacitors and 9V/6.5W output when it acts as a charger for the robot cleaner. The system is verified to be sTable and reliable by both the simulation and experimental results.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

An Aerial Robot Equipped with Solar Cells : GAORI (태양전지 탑재 공중로봇 : GAORI)

  • Son, Byung-Rak;Park, Hee-Jin;Kong, Dong-Uck;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.160-162
    • /
    • 2012
  • 최근 무인항공기 분야에서 전력원으로 신재생에너지를 사용하기위한 연구가 진행되고 있다. 무인항공기의 전력원은 무게에 매우 민감하기 때문에 상대적으로 가벼운 태양전지를 많이 사용하고 있다. 본 논문은 태양전지와 2차전지를 동력원으로 사용하는 틸트-로터형 태양전지 탑재 공중로봇(GAORI)의 플랫폼 및 소프트웨어 설계와 향후 연구방향에 대하여 설명한다.

  • PDF

Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot (다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어)

  • Do, Hyun Min;Kim, Byung In;Park, Chanhun;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

Design of the Supporting Structure of a Wire Saw for the Solar Cell Wafer (태양전지 웨이퍼용 Wire Saw안정화를 위한 지지구조 개선)

  • Yi, Il Hwan;Ro, Seung Hoon;Kim, Dong Wook;Park, In Kyu;Kil, Sa Geun;Kim, Young Jo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • In recent years, the solar cell market has steadily grown with the demand for new energies. And wire sawing is one of the most critical processes in manufacturing solar cell wafer which is supposed to affect the breakage of wafers most during the process and afterwards. Generally, the defects of the wafers are generated from the structural vibrations of the machine. In the sawing process, the vibrations cause unnecessary normal stress on the cut surface of wafers, and eventually create the surface damage or leave the residual stress. In this study, the dynamic properties of a wire saw have been analyzed through the frequency response test and the computer simulation. And the effects of the design alterations have been investigated to stabilize the machine structure and further to reduce the vibrations. The result shows that relatively simple design alterations of supporting structure without any change of major parts of the machine can suppress the vibrations of the machine effectively.