• 제목/요약/키워드: Solar Cell Module

검색결과 343건 처리시간 0.03초

태양에너지를 이용한 단일 모듈 형태의 전원공급시스템 개발 (Development of the power supply system of single module type using solar energy)

  • 안인수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.658-661
    • /
    • 2010
  • 태양에너지의 활용은 새로운 산업의 창출과 함께 다양화 되고 있다. 본 연구에서는 태양에너지를 이용하기 위한 단일 모듈 형태의 전원공급시스템을 구현함으로써 공간적 지배를 받지 않고 전기 공급이 어려운 곳에서도 전기를 효율적으로 충전하고 간편하게 사용할 수 있는 개선된 성능의 전원공급시스템을 개발하고자 한다.

  • PDF

BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 - (A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation -)

  • 전현우;윤혜경;박서준
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

태양전지를 전원으로 사용하는 무선센서 노드를 위한 전원관리회로 (Power Management Circuit for Solar cell Powered Wireless Sensor Nodes)

  • 강성묵;박경진;김호성;박준석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1925_1926
    • /
    • 2009
  • This paper describes a novel power management circuitry for reducing the sleeping mode power dissipation. Based on the proposed power management circuitry, the sensor module can be activated by RF wake-up signal, perform designated process and deactivate itself. There is absolutely no power dissipation at the sleeping mode which takes almost time of the operation. The temperature sensor module using solar cell as energy source has been fabricated and tested. Experimental results show that the sensor module with 3300 ${\mu}$F for storage capacitor can transmits RF temperature data to a receiver at a distance of 20 m every 15 second in a normal indoor light condition and keep the capacitor voltage over 9 V. And the sensor module can operate 100 times with a single charging, that means it is possible for the sensor module to transmit every 5 minute for 8 hours without light or any other power input during the night time.

  • PDF

PV모듈 제조공정에서 Interconnection에 따른 전기적 손실 특성 분석 (The Analysis of electrical loss characteristics by interconnection during PV module fabrication process)

  • 이진섭;강기환;박지홍;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.216-217
    • /
    • 2007
  • In this study, we analyzed the electrical loss characteristics between ribbon and output terminal of constituent material according to electrical resistance during interconnection process of PV module. From this result, the electrical output power reduction rate caused by interaction between ribbon and cell's interconnection was 2.88%. There was 1W electrical output power reduction through the 16 solar cells. So it is expected that the wider size of PV module gives the higher loss in electricity production. Also, the average output power of PV module passed lamination process was increased by 0.081W per one solar cell and the increase rate was 3.7%.PV module's electrical loss before and after lamination process according to constituent material's terminal was 0.49W and 0.50W, respectively.

  • PDF

양면수광형 실리콘 태양광 모듈의 바닥면 반사조건 변화에 따른 발전성능 평가 (Evaluation of Bifacial Si Solar Module with Different Albedo Conditions)

  • 박도현;김민수;소원섭;오수영;박현욱;장성호;박상환;김우경
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.62-67
    • /
    • 2018
  • Multi-wire busbar-type bifacial n-type Si solar cells have been used for the fabrication of monofacial and bifacial photovoltaic (PV) module, where bifacial module was equipped with transparent backsheet while monofacial module was prepared using white backsheet. The comparison of six-day accumulated power production obtained from outdoor test under gray cement ground conditions using 60cell monofacial and bifacial PV modules suggested the bifacial gain of over 20% could be achieved. Furthermore, the outdoor evaluation tests of bifacial modules with different ground conditions such as cement (reference), green paint, white paint and green artificial grass, were performed. It turned out white paint showed the best albedo and thus the highest power production, while green paint and artificial grass showed less power generation than cement ground.

PV모듈 발전성능 비교시험과 계측편차 요인 분석 (Analysis of Comparison Test and Measurement Error Factor for I - V Performance of Photovoltaic Module)

  • 강기환;김경수;유권종;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.70-75
    • /
    • 2009
  • In this experiment, we did sampling 6 kinds of photovoltaic modules and analyzed the discrepancy of measurement results between l laboratory and 4 PV makers to have performance repeatability at Standard Test Condition(STC) condition. From the KIER's results, Korea's standard test laboratory, other laboratory showed -10% measurement variation. The causes came from correction of reference cell, test condition and the state of skill. Form the comparison test, we analyzed the problems. But three PV maker reduced measurement variation, other one PV maker and one test laboratory didn't improve the problems of correction of reference cell, test condition and the state of skill. Also, High Efficiency Module had a big discrepancy of -10.0$\sim$-6.2% among 3 laboratories which have a less than 10msec light pulse duration time. This made low spectrum response speed so the Fill Factor decreased maximum output power under 10msec light pulse duration time

태양전지모듈적용 투명유리의 광특성 분석 (The Analysis of Optical Characteristics of Glasses for PV Module Application)

  • 김경수;강기환;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.98-103
    • /
    • 2008
  • The glass for crystalline PV module fabrication should have high thermal and mechanical resistance to environmental also have high transparency. In this paper, we analyze the optical characteristics of glasses for photovoltaic module application. The transmittance of several glasses are measured. The effects of texturing on low iron glass, glass thickness, anti-reflective glass, photocatalyst-treated glass and special glass are compared each other. Then this will give some information to select PV glass for manufacturing. The detailed analysis is described in the following paper.

  • PDF

열충격 시험 후 태양전지 파괴 모드에 따른 전기적 특성변화 (Electric Degradation of Failure Mode of Solar Cell by Thermal Shock Test)

  • 강민수;전유재;신영의
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.327-332
    • /
    • 2013
  • 일본 연구에서는 열충격 시험을 통한 태양전지의 파괴모드에 따른 전기적 특성을 분석하였다. 시편은 Photovoltaic Module을 만들기 전 3 line Ribbon을 Tabbing한 단결정 Solar Cell을 제작하였다. 열충격 시험 Test 1의 온도조건은 저온 $-40^{\circ}C$, 고온 $85^{\circ}C$, Test 2는 저온 $-40^{\circ}C$, 고온 $120^{\circ}C$에서 Ramping Time을 포함하여 각각 15분씩, 총 30분을 1사이클로 500사이클을 각각의 조건으로 수행하였다. 열충격 시험 후 Test 1에서는 4.0%의 효율 감소율과 1.5%의 Fill Factor 감소율을 확인하였으며, Test 2에서는 24.5%의 효율 감소율과 11.8%의 Fill Factor 감소율을 확인하였다. EL(Electroluminescence)촬영 및 단면을 분석한 결과, Test 1과 Test 2 시편 모두 Cell 표면 및 내부에서의 Crack이 발견되었다. 하지만, Test 2의 시험이 Test 1보다 가혹한 온도조건의 시험으로 인해 Test 1에서 나타나지 않았던, Cell 파괴를 Test 2에서 확인하였다. 결국, Test 1에서 효율의 직접적인 감소 원인은 Cell 내부에서의 Crack이며, Test 2에서는 Cell 내부에서의 Crack 및 Cell 파괴로 인한 Cell 자체의 성능저하로 효율이 크게 감소한다는 것을 본 실험을 통하여 규명하였다.

태양광 발전을 위한 태양추적시스템 설계 (Design of Sun Tracker System for Solar Power Generation)

  • 안준식;허남억;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF

태양광 발전시스템의 신뢰성 향상을 위한 태양전지의 PID 저감 기술의 타당성 검토 (A Study on Validity of Anti-PID Technology of Solar Cell for the High Reliability of Photovoltaics System)

  • 백성선;백승엽;정태욱;조진형
    • 산업경영시스템학회지
    • /
    • 제36권2호
    • /
    • pp.32-38
    • /
    • 2013
  • In recent years, anti-PID (Potential Induced Degradation) technologies have been studied and developed at various stages throughout the solar value chain from solar cells to systems in an effort to enhance long-term reliability of the photovoltaics (PV) system. Such technologies and applications must bring in profits economically for both manufacturers of solar cell/module and investors of PV systems, simultaneously for the development of the PV industry. In this study two selected anti-PID technologies, ES (modification of emitter structure) and ARC (modification of anti-reflective coating) were compared based on the economic features of both a cell maker with 60MW production capacity and an investor of 1MW PV power plant. As a result of this study, it is shown that ARC anti-PID technology can ensure more profits over ES technology for both the cell manufacturer and the investor of PV power plant.