• Title/Summary/Keyword: Solar Cell Module

Search Result 343, Processing Time 0.035 seconds

Development of Solar Concentrator Cooling System (태양광 시스템의 냉각장치 개발)

  • Lee, HeeJoon;Cha, Gueesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4463-4468
    • /
    • 2014
  • To increase the efficiency of a solar module, the development of solar concentrator using a lens or reflection plate is being proceeded actively and the concentrator pursues the a concentration using a lens or an optical device of a concentration rate and designing as a solar tracking system. On the other hand, as the energy density being dissipated as a heat according to the concentration rate increases, the cares should be taken to cool the solar concentrator to prevent the lowering of efficiency of solar cell by the increasing temperature of the solar cell. This study, researched and developed an economical concentrator module system using a low priced reflection optical device. A concentrator was used as a general module to increase the generation efficiency of the solar module and heat generated was emitted by the concentration through the cooling system. To increase the efficiency of the solar concentrator, the cooling system was designed and manufactured. The features of the micro cooling system (MCS) are a natural circulation method by the capillary force, which does not require external power. By using the potential heat in the case of changing the fluid, it is available to realize high performance cooling. The 117W solar modules installed on the reflective plate and the cooling device in the cooling module and the module unit was not compared. The cooling device was installed in the module resulted in a 28% increase in power output.

Characteristics of Photovoltaic I-V According to the Module Temperature

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2101.1_2102.1
    • /
    • 2009
  • Solar energy is an extreme intermittent and inconstant energy source. This paper presents the analysis of photovoltaic I-V characteristics according to the module temperature. It shows that the result of the relationship between DC current and the module temperature of solar cell will be effects by the increasing irradiation.

  • PDF

The Fundamental Researches to Evaluate PVT Module Performance (PVT 모듈 성능 평가를 위한 기초 연구)

  • Kim, Pilkyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • PVT modules commonly can be defined as a combination of PV modules and thermal collectors. After absorbing sun light, electricity and hot water can be actually provided to users simultaneously, which dual outputs (electricity and hot water) have drawn academic interest and industrial activities. Additionally, heat exchange between solar cell and flowing water can enhance solar cell efficiency. Because of PVT modules effectiveness, new international markets and commercial products have made. Especially European, facilities and measurement methods are established to evaluate PVT module performance. However, there are no currently appropriate internationally and domestic standards and facilities to test PVT module performance Herein, to test PVT module performance, indoor thermal simulators and fundamental standard study are considered.

Degradation Analysis of PV Module Considering Electrical Characteristics (전기적인 특성을 고려한 태양전지모듈의 노화 분석)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hong;Ahn, Hyung-Ken;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1110-1111
    • /
    • 2008
  • The life time of PV module is semi-permanent. But, because of installation and module fabrication process, its important part can not be finished. In this paper, we analyze 15 years old modules made from different company. Among the PV modules, the maximum power drop ratio was 12.23% minimum and 80.63% maximum. Also the effect of solar cell's short circuit current difference was analyzed. The PV module exposed about 65days, its the maximum power drop ratio was 1.29% minimum and 23.43% maximum. It is for reduction of current value. And the reason for current reduction was due to reduction of parallel resistance of solar cell. To prevent early degradation, it is need to have attention to fabrication, installation and maintenance.

  • PDF

Soldering Process of PV Module manufacturing and Reliability (태양전지 모듈의 솔더링 공정에 대한 신뢰성)

  • Kim, S.J.;Choi, J.Y.;Kong, J.H.;Moon, J.H.;Lee, S.H.;Shim, W.H.;Lee, E.H.;Lee, E.J.;Lee, H.S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • Although PV module manufacturing and its structure are simple, the semi-permanent products can be used out doors for more than twenty years. Therefore it is need to choose proper materials and optimize manufacturing process. This paper suggest that factors of degradation need to be studied to achieve a more understanding of PV module Degradation rates and material failure. Nowadays durability of the PV Module is very important to sustain output safety for obtaining reliability. This paper is about the experiment that soldering uniformity of soldering process and to make least void from soldering process. From This study soldering flux residue and soldering method is main factor to form void blocked soldering uniformity and by using this.

  • PDF

Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

The Deduction of the Optimal Length to Width Ratio of Dye-sensitized Solar Cell and the Fabrication of a Module (가로-세로 비율에 따른 염료감응형 태양전지의 최적 조건 도출 및 모듈 제조)

  • Kim, Hee-Je;Park, Sung-Joon;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Mi-Jeong;Lee, Kyoung-Jun;Son, Min-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.100-106
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-sensitized Solar Cells (DSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6\;cm$ and an active area $8\;cm^2$ ($4.62{\times}1.73\;cm$) which attained a conversion efficiency of 4.02%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. Surface morphology and sheet resistance of Pt counter electrode did not degrade the performance of the cell. This novel 8V-0.33A DC power source shows stable performance with an energy conversion efficiency of 4.24% under 1 sun illumination (AM 1.5, Pin of $100\;mW/cm^2$).

Simulation of I-V characteristics of a PV module in matlab (Matlab을 통한 PV 모듈의 I-V 출력 특성 시뮬레이션)

  • Hong, Jong-Kuong;Jung, Tae-Hee;Ryu, Se-Hwan;Won, Chang-Sub;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.71-72
    • /
    • 2008
  • This paper describes a circuit based simulation model for a Photovoltaic(PV) cell in order to estimate the electrical behavior of the solar cell module with changes of environmental parameters such as shunt resistance, series resistance, temperature and irradiance. An accurate I-V model of PV module is presented based on the Shockley diode model. The general model was implemented on Matlab scrip file, and used irradiance and temperature as variables and outputs of the I-V characteristic. A typical PV module was used for the evaluation, and results was compared with reference taken directly from the manufacturer's published curves leading to excellent agrement with the theoretical prediction.

  • PDF