• Title/Summary/Keyword: Sol-gel High temperature

Search Result 185, Processing Time 0.023 seconds

Electrochemical Properties of MnO$_2$electrode for supercapactor wish a Diffuser (Polyvinylalcohol) (분산제 PVA에 따른 수퍼커패시터용 이산화망간전극의 전기 화학적 특성)

  • 이상오;김한주;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.753-756
    • /
    • 2001
  • This research made a study of MnO$_2$electrode for supercapacitor with a diffuser (Polyvinyl alcohol). Manganese dioxide was used as active material. We tried to increase specific surface area by adding PVA. Manganese dioxide was synthesized by a sol-gel method using fumaric acid and oxalic acid in low temperature with high yield. Therefore, We prepared Manganese dioxide powder. This powder was used by active materials. The electrode was made by a mixture of active material, ketjen-black which is a large specific surface area, and PVdF-co-HFP as binder agent with using Nickel mesh as current collector. Here we reported on the synthesis and electrochemical performance of a enhanced material. All active materials have been submitted to X-ray diffraction and Scanning electron microscopy.

  • PDF

The Effect of Processing Variables on Structural Changes and Optical Properties of $SiO_2-TiO_2$ Sol-Gel Derived Films

  • Hwang, Jin Myeong;Im, Seong Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1181-1186
    • /
    • 2000
  • The structural evolution during the thermal treatment of $70SiO_2-3OTiO_2(mole%)$ sol-gel derived powders and films was investigated by FT-IR, Raman and XPS, and XRD. From these results, the $TiO_2-rich$ regions involving $Ti^{4+}$ ions in octahedral coordination were confirmed to be amorphous at $600^{\circ}C$. However, Raman spectra along with XRD patterns indicated that at high temperature (above $700^{\circ}C)$, the amorphous $TiO_2was$ segregating to form anatase crystal. Also, the effect of experimental variables such as thermal treatment, heating rate and exposure to water vapor on structural changes, refractive index and thickness of the film coated on sodalime-silicate glass were investigated.

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Preparation of TiO2-SiO2 Sol and Its Photo-Catalyst Properties for High Temperatures (고온 소성용 TiO2-SiO2계 광촉매의 제조 및 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.471-475
    • /
    • 2004
  • TiO$_2$, SiO$_2$, and PBA(Pseudo Boehemite Alumina) sol were prepared by sol-gel process. The particle sizes of these sol exhibited uniform 10∼30 nm. As the amount of SiO$_2$ sol increased, the temperature of phase transition (from anatase phase to rutile phase) was raised temperature than $600^{\circ}C$, which attributed to the enhanced photocatalyst properties. Also, the anatase phase was obtained with very small amount of the rutile phase from the addition of SiO$_2$ (10∼30 wt%) at annealing temperature of 120$0^{\circ}C$. The specimen with 20 wt% SiO$_2$ sol exhibited the maximum photocatalyst properties. But, the specimen with PBA sol did not affect photocatalytic activity due to the presence of rutile phase.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

A Synthesis of Mullite and Cordierite Ceramics by Solution-Polymerzation Route Based on PVA (PVA를 이용한 Solution-Polymerzation 합성법에 의한 Mullite, Cordierite 세라믹스의 합성)

  • 이용석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Because of the excellent thermal and chemical properties of mullite and cordierite as the stable oxide ceramic materials, they were widely used from engineering materials to electronic materials. Notwithstanding of their high demands, mullite was synthesised because it is not existed in nature. It is also difficult to produce cordierite of fine powder with high purity due to the narrow range of synthetic temperature. Mullite was synthesised by solid state reaction. However, synthesized mullite has been inhomogeneous. Because of the facts, various synthetic methods have been studied so far including sol-gel method. The purpose of this study is to synthesis mullite and cordierite of fine powder with high purity at the lower temperature by solution-polymerization route using PVA as a polymer carrier, which is an economical method by using low cost materials. As a result, mullite and cordierite were produced with mono crystal phase at 1200$^{\circ}C$ and 1250$^{\circ}C$, respectively, and their surface area over 20 ㎡/g.

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method (졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성)

  • 박상식;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.909-915
    • /
    • 2003
  • Anodic oxide films on aluminum play an important role as a dielectrics in aluminum electrolytic capacitor. In order to obtain the high capacitance, ZrO$_2$ films were coated on aluminum foils by sol-gel method and then, the properties of anodized films were studied. The coating and drying of the films were repeated 4-10 times and annealed at 300~$600^{\circ}C$ and the triple layer of ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$ was formed onto aluminum substrates after anodizing of ZrO$_2$/Al film. The thickness of $Al_2$O$_3$ layer was decreased with increasing the annealing temperature due to the densification of ZrO$_2$ film. The ZrO$_2$ films were crystallized even at 30$0^{\circ}C$ and showed nanocrystalline structure. The. capacitance of aluminum foil annealed at low temperature was higher than that at high temperature. The increase of capacitance was due to the high capacitance of ZrO$_2$ film annealed at low temperature. The capacitance of ZrO$_2$ coated aluminum increased about 3 times compared to that without a ZrO$_2$ layer after anodizing to 400 V. From these results, the aluminum foils with composite oxide layers are found to be applicable to the aluminum electrolytic capacitor.

Effect of Gelation Condition on Physical Properties of Yellowfin Sole Gelatin Prepared by Ethanol Fractional Precipitation (에탄올처리 각시가자미껍질 젤라틴의 물리적 특성에 대한 겔화조건의 영향)

  • Kim, Jin-Soo;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.483-486
    • /
    • 1995
  • With a view to increase utility of ethanol fractionated fish skin gelatin as a food source, the effect of gelation condition on physical properties of the gelatin was investigated. The physical properties of gelatins treated with or without ethanol were improved with a concentration of gelatin increased. The properties such as gel strength, melting point and gelling point of 10% gelatin sol or gel were reached to maximum at pH 6.0 in ethanol treated gelatin and pH 5.0 in non treated one, respectively. Gel strength and melting point of both gelatin gels chilled for long time at low temperature were superior to those of both gelatin gels chilled for short time at high temperature. Gel strength, melting point and gelling point of ethanol treated gelatin gel or sol prepared under optimized gelation conditioning were superior to those of non treated one.

  • PDF

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.