• Title/Summary/Keyword: Soil-cement wall (SCW)

Search Result 10, Processing Time 0.029 seconds

Soil-Cement를 이용한 지하댐 차수벽 재료의 강도 특성 평가

  • Im Eun-Sang;Seo Min-U;Kim Hyeong-Su;Sin Dong-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.228-231
    • /
    • 2005
  • 본 연구는 지하수를 생활용수로 활용하기 위한 시설물로 검토되고 있는 지하댐을 건설함에 있어 유력한 공법으로 제안되고 있는 SCW(Soil Cement Wall) 차수벽 설계지침을 마련하기 위하여 수행된 시험결과이다. 실험을 통해 SCW 각 혼합재료의 함유율에 따른 일축압축강도와 차수벽체의 강성을 나타내는 평균탄성계수를 산정하였으며, 혼합재료의 함유율과 양생조건을 조절하면 지하댐과 같은 구조물에 최적의 조건이라고 할 수 있는 고강도 저강성 벽체의 구현이 가능하다는 것을 확인하였다.

  • PDF

Unhardening Phenomena of SCW constructed in Organic Soil (가설 토류벽용 SCW의 미경화 현상)

  • 김교원;송정락;강기영
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A series of laboratory tests were conducted to verify the unhardening phenomena of Soil-Cement Wall (SCW) and the results are presented in this paper. Specimens are prepared by mixing the site soil with cement and additives at a various ratio. The hydration of the cement mixed with the in-situ soil was retarded due to the higher organic content of the soil. In order to remove the influence of the organic matters in hydration reaction, calcium chloride (CaCI$_2$) was added as an acceleration additive at a different ratio. The optimum ratio of the calcium chloride for the higher SCW strength was determined as 2% of cement weight. The strength, however, was decreased by adding 4 and 6% of the additives. The effect of other additives, NaOH and NaSiO$_2$, were also investigated and the results are included. The strength of SCW by adding sodium hydroxide was lowered. And the short term strength by adding sodium silicate was increased but the long term strength was decreased.

  • PDF

Evaluation of Leachate Containment by Soil-cement Walls for a Closed Landfill (사용종료매립지 정비를 위한 흙-시멘트 연직차수벽의 차수성능 평가)

  • Lee, Dong-Geon;Ahn, Jo-Hwan;Kwon, Ki-Wook;Koo, Ja-Kong;Bae, Woo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.62-70
    • /
    • 2011
  • This study was conducted to evaluate the performance of soil-cement walls (SCWs) to control leachate from a leaking landfill site. Tracer tests revealed that the SCW was effective to control groundwater seepage. Approximately two-months of curing period appeared to be sufficient to ensure thorough containment of landfill leachate, although a three-week period was not enough. The water quality of the monitoring wells after construction of the SCWs met the groundwater quality standard of the korean Waste Management Act, except for bacteria and coliform groups. Also an analysis of a spring water around the landfill showed that the concentrations of ammonia, inorganic nitrogen and soluble manganese which had been common contaminants in the spring water decreased dramatically after constructing the walls. Therefore, the results suggested that a SCW can be an attractive method to control leachate from a leaking landfill site.

Durable Characteristic of Ground Solidification Material's Body of Hardening used Eco-friendly SCW Method (친환경 SCW공법용 지반고화재 경화체의 내구특성)

  • Jo, Jung-Kyu;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.118-119
    • /
    • 2017
  • In the S.C.W (soil cement wall) grouting solution, Cement grout ratio of 1 part Portland cement and 1part water is being used. However, Co2 and harmful heavy metals such as cr6+ are discharged in the process, causing a serious environmental issue. The purpose of the present study is therefore to substitute cement grout to inorganic binder and identify durability properties of ground solidification materials.

  • PDF

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

A Study on the Utilization Method in the SCW Method using Supplementary Cementitious Materials (시멘트 대체재료를 활용한 SCW공법에서의 활용 방안에 대한 연구)

  • Kwang-Wu Lee;Jae-Hyun Park;Young-Won Lee;Dae-Sung Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • Recently, redevelopment of the original downtown area is underway, the necessity of construction in adjacent location is increasing. However, excavations in dense urban areas are prone to ground problems due to various causes, so it is necessary to use materials and methods that can minimize such problems. As a general earth retaining method, various methods such as diaphragm wall and CIP method are applied using cement. However, since a large amount of cement is used for the installation of earth retaining method, it is necessary to conduct research on the development of new cement substitute materials to significantly reduce greenhouse gas emissions. In this study, we utilized the hardening reaction of blast furnace slag powder, desulfurized gypsum and high calcium fly ash by alkali activation and applied it to the SCW method. As a result, it was analyzed that the compressive strength of solidified soil using development solidification material was 96.2 ~ 106.3% of OPC at 28 days of curing. In addition, the strength increment ratio was 2.06 for sandy soil and 2.41 for clayey soil, which was higher than 1.85 of OPC. It seems an advantageous in terms of long-term strength. In addition, from the environmental point of view, it was analyzed that there is no elution of heavy metals and that greenhouse gas emissions can be dramatically reduced. Therefore, if further studies are conducted, it can be applied to the SCW method.

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Performance Evaluation of Close Waste Landfill Vertical Slurry Wall(SCW) by Tracer Method (추적자조사기법을 활용한 사용종료매립장 연직차수벽 성능평가)

  • Lee, Dong-Geon;Oh, Young-In;Kim, Kwan-Ho;Cho, Sook-Hee;Bak, Eun-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1245-1252
    • /
    • 2010
  • Many industrialized countries are confronted with a difficulty about reuse of closed waste landfill. facilities. Especially, the demand of closed waste landfill maintenance and reuse nearby urban area has been increased, because of the shortage of usable land and extend of urban area. For the safe reuse of closed waste landfill, the most important check point is the effect of waste landfill on environment abound them. However, the non-sanitary closed waste landfill generally have no leachate lining system, therefore, the in-situ lining system such as sheet-pile, and vertical slurry wall etc. was needed to prevent the leachate outgoing from the waste landfill. In this paper present the case history of performance evaluation of vertical slurry wall by tracer tests.

  • PDF

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

Prediction and Field Measurement on Behaviour of Soft Clay during Deep Excavation (연약점성토지반에서의 깊은굴착에 따른 지반거동의 예측과 현장계측)

  • 정성교;조기영;정은용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.111-124
    • /
    • 1999
  • When deep excavation adjacent to an existing structure is performed, it is very important to minimize damage on the structure through the prediction of ground movement. In this paper, finite element analysis was performed to predict the ground movement, based on the data from site investigation and laboratory tests, when deep excavation close to a buried water tank was carried out in soft clay ground. The movement and stabilities of the soil-cement wall(SCW) and the adjacent structure were checked using the results of the analysis and the field measurement. The comparison between the measured and the predicted ground movements showed the significance of the excavation procedure and lowering of water level in the analytical model. In the future, it is needed to improve the prediction method for better estimation of the ground movement.

  • PDF