• Title/Summary/Keyword: Soil-Rock contact

Search Result 18, Processing Time 0.024 seconds

A Study on Friction Angle of Rock-Soil Contacts for Rock Type (암종에 따른 토사와 암반 경계면의 마찰각 변화 특성에 관한 연구)

  • Lee, Su-Gon;Lim, Chang-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.9-14
    • /
    • 2002
  • It is common that the soil layer is few meters below the earth surface and there are rock masses below the soil layer in the view of geological characteristics in Korea. The boundary between rock and soil is clearly divided. When dealing with the stability of rock masses, as in the case of rock slopes or dam foundations, the majority of the collapses is not within the soil layer, but within the soil-rock boundary. Therefore, it is important to identify the shear strength characteristics between soil-rock contacts. It has been common practice to assume that the strength of the soil or shale represents the minimum strength present. However, it has been suggested by Patton(1968) that such an assumption may not be valid and that lower shear strengths might be obtained along the soil-rock interface than for either material alone. Then, in this thesis, introduce rock and residual soil shear strength tests and the specimen preparation and testing procedures are described in detail and also the testing results are presented and discussed.

Geosynthetics: material characteristics of geotextiles &geomembranes

  • Rollin, Andre L.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.1-25
    • /
    • 2003
  • geosynthetles -A manufacturerl synthetic product used with soil, rock or other materials to enhance the performance of geotechnical works geotentiles - A permeable textile product used in contact with a soil for separation, filtration, reinforcement and drainage geemembranes - A synthetic low permeability material used as liner in geotechnical applications. (omitted)

  • PDF

Evaluation of Drilled Shaft's End Condition by Impact-Echo Method (충격반향기법에 의한 현장타설 말뚝기초의 선단 조건 평가)

  • Kim, Dong-Soo;Kim, Hyung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • Experimental model studies were carried out to evaluate the end condition for drilled shafts by applying elastic impact on the top of the shaft, which is one of the various methods using stress waves. Typical impact responses corresponding to the various end conditions including free, fixed, rock-socketed, and soft-bottom with good and poor side contact conditions, were investigated. In order to simulate these renditions, mock-up shaft models made of cement mortar were used. Small-scale laboratory experiments were also performed, and field tests were carried out for the shafts that were socketed into weathered rock. It is found that the rock-socketed condition and depth of penetration into rock ran be identified from the reflection at the interface between the soil and rock in the waveform. The soft bottom rendition can be identified, only when the side contact between shaft and surrounding rock is poor, whereas it cannot be identified when the side contact is good because the waveform is similar to that of fixed end rendition.

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

Laboratory Experimental Study on Interfacial Friction of Rock and Grout (암반과 그라우트체의 접촉면 마찰 평가를 위한 모의실내실험)

  • Park, Ji-Ho;Kim, Young-Uk;Jeong, Kyeong-Han;Kim, Jung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3723-3728
    • /
    • 2011
  • This study investigated the friction behaviors of rock and grout through the small /large scale laboratory experiments. The small-scale laboratory tests were undertaken using a specially designed and fabricated equipments to simulate the contact surface of rock. In calibration chamber test, a artificial rock mass was prepared in soil container to measure the tensile resistance of grout. Test condition includes the grouting method of pressure involvement. The results of the tests show that the pressure grouting increases the frictional resistance significantly.

The Study on the Wollastonite Mineral Resources for Silicious Fertilizer (Wollastonite을 중심(中心)으로 한 규산질비료광물자원(珪酸質肥料鑛物資源)에 관(關)한 연구(硏究))

  • Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.221-229
    • /
    • 1972
  • Through the series of study on the above subjects, the following were founded. 1. Soluble silica in paddy top-soil (xppm) and maxium possible yield (y) is expressed as following equatic $y=63.97+0.425x-0.00114x^2$ It is known that soluble silica in paddy top-soil in South Korea is limited as 130ppm. 2. Gnder the present Korean condition 90% of paddy-top-soil is estimated to be short in available silica content and the country average to only 78ppm. 3. The total area of Korean paddy-top-soil is about 1,036,710 ha. All requirements of wollastonite in South Korea estimated from the equation $Y=0.94-0.033{\times}$are about 2 million M/T 4. Silicates fertilizer minerals are Bentonite, Zeolite, Wollastonite, Serpentine, and Chlorite. But Wollastonite is most economic and can be supplied to using Korea. 5. Wollastonite is formed in contact metomorphic deposits. Limestone is the country rock of wollastonite. Limestone in Korea is in Ryunchcon system, (Pre-cambrian) Okcheon system, (unknown), Great limestone series (paleozoic), Hongjum series (Paleozoic) and Kyungsang system (mesozoic) so that the zones of these limestone and igneous rock are the possible area which wollastonite can be produced. 6. According to the published geologic map (scale 1/5000), about 25 provinces will be possible area which wollastonite can be produced. In future, I believe that many possible area will be increased. 7. According to this survey at Danyang, total wollastonite resources are about 179,000 M/T and average of soluble $SiO_2$ is 29.84%. 8. According to this survey at Daijeon, total resources are about 57,600 M/T and average of soluble $SiO_2$ is 21.53%. 9. Total wollastonite resources including Danyang, Yangduk, and Daijeon are about 1,172,200 M/T. Considering possible resources, it will be over 20 million M/T and I can say that it is possible to be supply for a score.

  • PDF

Study on the Livestock Waste Water Treatment by the Modified Activated-Sludge Process and Sawdust-Soil Filter Method (變形된 活性汚泥法과 톱밥 土壤濾過法을 利用한 畜産廢水處理에 關한 硏究)

  • Jeon, Byoung-Soo;Kwag, Chung-Hoon;Thak, Tae-Young
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.77-82
    • /
    • 1995
  • In order to investigate the purification effects of livestock waste water, Modified Activated-Sludge Process(MASP) containing marine silica and volcanic ash-rock as the contact media and Sawdust-Soil Filter Method were used. The results obtained are as follows: 1. MASP which treated two metric tons' livestock waste water a day decreased BOD by 97.5% from 4,400.0mg/I to 108.8mg/I and SS by 98.0% from 5,335.0mg/I to 111.0mg/I. 2. MASP decreased BOD by 93.9% from 2,549.1mg/I to 156.6mg/I and SS by 96.3% from 3,521.9mg/I to 132.0mg/I when ten metric ton's livestock waste water was treated a day. 3. BOD and SS were decreased by 83.4% from 45.1mg/I to 7.5mg/I and by 83.4% from 47.5mg/I to 7.9mg/I when the supernatant layer treated by MASP was purified by Sawdust-Soil Filter Method.

  • PDF

Distribution of Ground Contact Pressure under Rigid Foundation of Large Pneumatic Caisson (대형 뉴메틱케이슨 강성기초의 접지압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.105-115
    • /
    • 2008
  • The records of field instrumentation, which have been performed on the pneumatic caisson used for substructure of the Youngjong Grand Bridge, were analyzed to investigate the ground contact pressure under rigid foundation of large pneumatic caisson embedded in various ground layers. During sinking the pneumatic caisson, the resisting force was mobilized against sinking the caisson at the contact area between bottom of the caisson and the ground. The resisting force could be measured by the reaction force gauges instrumented under the edge of bottom of the pneumatic caisson. And the ground contact pressure could be estimated by use of the measuring records of the resisting force. The ground contact pressure under rigid foundation of large pneumatic caisson shows concave distribution on bedrock, while convex distribution was shown in marine deposit soil layer as well as weathered rock layer. And, the ground contact pressure in various ground layers was distributed axis-symmetrically. The distribution shape of the ground contact pressure determined by the maximum pressure acting on foundation of the large pneumatic caisson showed good coincidence with the distribution shape proposed for rigid foundation by Kgler(1936) and Fang(1991).

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Influence of geometric factors on pull-out resistance of gravity-type anchorage for suspension bridge

  • Hyunsung, Lim;Seunghwan, Seo;Junyoung, Ko;Moonkyung, Chung
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.573-582
    • /
    • 2022
  • The geometry of the gravity-type anchorage changes depends on various factors such as the installation location, ground type, and relationship with the upper structure. In particular, the anchorage geometry embedded in the ground is an important design factor because it affects the pull-out resistance of the anchorage. This study examined the effect of four parameters, related to anchorage geometry and embedded ground conditions, on the pull-out resistance in the gravity-type anchorage through two-dimensional finite element analysis, and presented a guide for major design variables. The four parameters include the 1) flight length of the stepped anchorage (m), 2) flight height of the stepped anchorage (n), 3) the anchorage heel height (b), and 4) the thickness of the soil (e). It was found that as the values of m increased and the values of n decreased, the pull-out resistance of the gravity-type anchorage increased. This trend is related to the size of the contact surface between the anchorage and the rock, and it was confirmed that the value of n, which has the largest change rate of the contact surface between the anchorage and the rock, has the greatest effect on the pull-out resistance of the anchorage. Additionally, the most effective design was achieved when the ratio of the step to the bottom of the anchorage (m) was greater than 0.7, and m was found to be an important factor in the pull-out resistance behavior of the anchorage.