• Title/Summary/Keyword: Soil water retention characteristics

Search Result 56, Processing Time 0.021 seconds

Removal Characteristics of NOx Using a Mixed Soil-Biofilter (토양 혼합여재를 이용한 질소산화물 제거특성)

  • Cho, Ki-Chul;Sin, Eun-Sang;Hwang, Gyeong-Cheol;Cho, Il-Hyoung;Lee, Nae-Hyun;Yeo, Hyun-Gu
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.15-26
    • /
    • 2006
  • As traffic in city-centre around the world continues to increase, so levels of atmospheric pollutants continue to rise. High concentrations of NOx can have negative effects on human health, and we must find new ways to reduce their levels in the air we breathe. Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide $(NO_2)$ produced using $O_3$ oxidation, at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was carried out to evaluate the removal characteristics of NOx through a laboratory-scale biofilter packed with soil as a packing material. A mixture media (yellow soil (30%): soil (40%): compost (10%): a used briquet (20%)) was applied. After about 1day of operation, the removal efficiency for $NO_2$ in all experiments with a constant condition ($25^{\circ}C$ and water humidity (60%)) was over 98%. The retention times of the section between phase I and phase II for formation and reduction of $NO_3$ NO and $NO_2$ on the initial $NO_3$ concentration was 50min $(O_3:195\;ppb),\;55min\;(O_3:925\;ppb),\;65min\;(O_3:1743\;ppb),\;70min\;(O_3:2616\;ppb),\;75min\;(O_3:3500\;ppb)$, respectively The soil biofilter system is a unique technology that purifies urban air by utilizing the natural processes that take place in the soil. Although some of the processes are quite complex, they can broadly be summarized as adsorption onto soil particles, dissolution into soil pore water, and biochemical.

Dependence of 0.01 M CaCl2 Soluble Phosphorus upon Extractable P and P Sorptivity in Paddy Soil (논토양에서 유효인산 함량과 인산 흡수능에 따른 0.01 M CaCl2 가용 인산 농도 변화)

  • Jung, Beung-Gan;Yoon, Jung-Hui;Kim, Yoo-Hak;Kim, Seok-Hyeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.384-390
    • /
    • 2003
  • Removal of phosphate from soil by leaching, runoff, and plant uptake is strongly influenced by the content and absorption characteristics of P in soil. In this study the relationships between water soluble phosphate and phosphate retention capacity of the soil was investigated. Water soluble and available phosphate, and phosphate absorption characteristics of 35 paddy soils were measured during incubation at $25^{\circ}C$. Water soluble phosphate content was highly correlated with available phosphate content, phosphorus absorption capacity (PAC), and phosphate absorbed (PS) in air-dried and wet soils. The most significant relationship was found between water soluble phosphate and the ratio of available phosphate and phosphate sorbed, and the relationship $0.01M\;CaCl_2-P=0.0828$ (Av. $P_2O_5/PS$)+0.0374 could be suggested for the estimation of water soluble phosphate from soil phosphorus characteristics.

Unsaturated Hydraulic Conductivity Functions of van Genuchten's and Campbell's models Tested by One-step Outflow Method through Tempe Pressure Cell (empe 압력셀에서 1-단계 유출법을 이용한 van Genchten모형과 Campbell모형의 불포화수리전도도 추정 검증)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.273-278
    • /
    • 2008
  • This study was carried out in order to test unsaturated hydraulic conductivity estimation of van Genuchten's and Campbell's models using one-step outflow method through Tempe pressure cell. The undisturbed soil cores (columns) were taken from Ap1, B1 and C horizons of Songjeong series (the fine loamy, mesic family of Typic Hapludults). After the saturated hydraulic conductivity Ks of the cores was determined by constant head method, water outflow rate and retentivity of cores were measured in Tempe pressure cell. Fitted curves by models accorded to measured data except for both end of pressure range. In near-saturated condition, measured water retention characteristics showed a relatively better fitness with Campbell's model than van Genuchten's. The soil unsaturated conductivity estimated by Campbell's model was higher than by van Genuchten's. In Ap1 and B1 horizon, the soil unsaturated conductivities obtained by one-step outflow method went between van Genuchten's and Campbell's hydraulic functions, slightly closer to van Genuchten's. In C horizon, van Genuchten's model had better fitness with the one-step outflow data. Consequently, van Genuchten's model generally had better fitness with measured hydraulic conductivity than Campbell's model at the soil water potential range of -10~-75 kPa, especially in C1 horizon. In near-saturated condition, Campbell's model could be thought as relatively accurate hydraulic model, because of the better fitness of Campbell's model with soil water retention data than van Genuchten's model.

Experimental Study on Hysteresis Phenomena in Porous Media (다공성 매질에서 이력현상에 대한 실험적 연구)

  • 강우영;박재현
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 1995
  • The water retention function which has the hysteresis phenomena is required to analyze the Richards equation which is a governing equation of the unsaturated flow, and its hysteresis phenomena has influence upon the characteristics of the unsaturated flow. The accuracy of the published hysteresis models is compared by using experimental data of the water retention function. The apparatus to experiment the hysteresis phenomena on the soil is developed, and experimental data for the main wetting process and the main drying process of the water retention function are obtained. The parameters of the van Genuchten equation are calibrated by using experimentally obtained data. As a result of the comparison of the selected hysteresis models which simulate the main drying curve from the main wetting curve, the Model I-1(Mualem) overestimates and the Model II-1(Mualem) underestimates but the Model III-2(Park and Sonu) similarly estimates the experimental data of the main drying curve.

  • PDF

Optimum loading capacity and nitrification characteristics of the swine wastewater treatment process using soil microbe (토양미생물을 이용한 축산폐수 처리공정의 적정부하율과 질산화공정의 특성)

  • Ha, Jun-Soo;Shin, Nam-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.183-187
    • /
    • 2000
  • Removal rate of nitrogen compound containing swine wastewater was 97 percent in case of high loading rate treatment of swine wastewater at studies for process development using soil microorganism. Minimum hydraulic retention time(HRT) for nitrification process was 11 days and solid retention time was 25 days. Nitrification was between 5 and 11 days but this time $NO_2-N$ was remained. Reactor condition was injured to nitrosomonas according to pH, $NO_2\;^--N$, and $NH_3\;^--N$ concentration but this condition was recover to pH controlling.

  • PDF

Changes of Soil Physical Properties by Manured Sorghum Residues Incorporation

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • Although sorghum residue production was estimated to be $8{\sim}10Mg\;ha^{-1}$, most sorghum straw was used to be burnt or removed after harvest. This experiment was conducted to evaluate the effect of the incorporation of manured sorghum residues on soil physical properties from 2010 to 2012 in the converted paddy field. Five treatment with 3 replication consisted of control, inorganic fertilizer (NPK), manured residues, sorghum stover and sawdust manure. The incorporation level of organic source was $10Mg\;ha^{-1}$ without inorganic fertilizer NPK. The investigated physical parameters were bulk density (BD), porosity, water stability aggregate (WSA), water infiltration rater (WIR), penetration resistance (PR) and soil water retention characteristics (WRC) with soil depth. The incorporation of manured sorghum residues improved WIR significantly over inorganic fertilizer (NPK), sorghum residues and sawdust manure. The BD by incorporating with manured residues on sorghum was reduced significantly with crop residue over plot of NPK and sawdust. Significant increase in WSA was observed with stubble incorporation alone or manured sorghum residues. Soil WRC were significantly enhanced with manured sorghum residue incorporated without NPK. The average PR at 0~15 cm was 0.54 MPa for manured sorghum residues. For sawdust manure plot it was 0.42 MPa, for Sawdust manure plot 0.39 MPa and for NPK plot 0.54 MPa.

Variation of Hydrological Characteristics of Soils Mixed with Industrial By-products by Pilot-Test (현장 Pilot실험을 통한 산업부산물 혼합토의 수리학적 특성 변화)

  • Yu, Chan;Yoon, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1655-1665
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF

An analysis of runoff characteristic by using soil moisture in Sulma basin (설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.615-626
    • /
    • 2019
  • Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.

Growth Response on the Euonymus fortunei 'Emelad' n 'Gold' as affected by Artificial Plantings Soil Properties during Dry Spring Season (봄철 건조기 용기형 벽면녹화에서 식재지반 조성에 따른 황금줄사철의 적응성)

  • Ju, Jin-Hee;Kim, Hea-Ran;Park, Heon;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1299-1305
    • /
    • 2014
  • For evaluating the effect of various artificial planting soil properties on the Euonymus fortunei 'Emelad'n Gold' growth, a container green wall system experiment was conducted in a wall of greenhouse at Konkuk University, Glocal campus. The experimental artificial planting grounds were prepared with different organic soil conditioner ratios (Control, $A_4O_1$, $A_2O_1$ and $A_1O_1$) and with drought tolerance and an ornamental value Euonymus fortunei 'Emelad'n Gold' was planted. The soil and plant characteristics were investigated from April to Jun 2010. The volumetric soil moisture contents were significantly increasing order as the amount of organic soil conditioner level increased in order to $A_1O_1$ > $A_2O_1$ > $A_4O_1$ > Control. At 4 treatment, soil chemical properties were inversely related to organic soil container ratios increase. The differences of root collar caliper, number of branch, and survival rate between the organic soil conditioner ratio were not significantly affected by organic soil conditioner. But, plant height, internode length, leaf length and leaf width were significantly shorter on plants planted $A_1O_1$ than plants planted other treatments. Therefore, Euonymus fortunei 'Emelad'n Gold' had good growth response regardless of organic soil conditioner ratio and the plant is expected to be a highly valuable shrub for the green wall system if it should be considered in integration with stormwater retention or as a soil conditioner for increasing soil water contents in artificial planting soil.

Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination

  • Younis, Uzma;Athar, Mohammad;Malik, Saeed Ahmad;Bokhari, Tasveer Zahra;Shah, M. Hasnain Raza
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Cotton is the major fiber crop in Pakistan that accounts for 2% of total national gross domestic product (GDP). After picking of cotton, the dry stalks are major organic waste that has no fate except burning to cook food in villages. Present research focuses use of cotton stalks as feedstock for biochar production, its characterization and effects on soil characteristics. Dry cotton stalks collected from agricultural field of Bahauddin Zakariya University, Multan, Pakistan were combusted under anaerobic conditions at $450^{\circ}C$. The physicochemical analysis of biochar and cotton stalks show higher values of % total carbon, phosphorus and potassium concentrations in biochar as compared to cotton stalks. The concentration of nitrogen was decreased in biochar. Similarly biochar had greater values of fixed carbon that suggest its role for carbon sequestration and as a soil amendment. The fourier transformation infrared spectroscopic spectra (FTIR) of cotton stalks and biochar exposed more acidic groups in biochar as compared to cotton stalks. The newly developed functional groups in biochar have vital role in increasing surface properties, cation exchange capacity, and water holding capacity, and are responsible for heavy metal remediation in contaminated soil. In a further test, results show increase in the water holding capacity and nutrient retention by a sandy soil amended with biochar. It is concluded that cotton stalks can be effectively used to prepare biochar.