• Title/Summary/Keyword: Soil water potential

Search Result 804, Processing Time 0.027 seconds

Characteristic of Matter Allocation of Calystegia soldanella under Water Stress (갯메꽃의 수분스트레스에 대한 물질분배 특성)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2013
  • Dry matter allocation characteristics of Calystegia soldanella, grown in pots, was analysed to assess its plasticity in response to water-stressed conditions. As water was withheld leaf water potential between the two watering treatments was similar during the first 6 days, followed by a rapid decrease in water-stressed plants. The minimum leaf water potential was -1.50 MPa on day 15 and the maximum leaf water potential was about -0.5 MPa on day 0 in water-stressed plants. In well-watered plants leaf water potential was maintained almost consistently throughout the experiment. There was no significant difference in plant dry weight between the two watering treatments for 9 days after the start of experiment and that was remarkably increased thereafter, compared with that remained without any increase in water-stressed plants. In dry mass partitioning, however, the water-stressed plants showed a great plasticity, showing that there were 1.81, 1.35 and 0.81 times increase in root, stem and leaf, respectively. Dry mass partitioning in well-watered plants varied from 2% to 5%. The difference of dry mass partitioning between the two watering treatments was reflected in leaf mass per unit area (LMA) and root/shoot (R/S) ratio. LMA in water-stressed plants was lower than that in well-watered plants, while R/S ratio in water-stressed plants was higher in well-watered plants. This means that the water-stressed plants reduced its leaf area and increased dry mass partitioning into root and stem during the progress of soil drying. These results indicate that Calystegia soldanella inhabiting in sand dune cope with water stress with high plasticity which can adjust its dry mass partitioning according to soil water conditions.

Effect of Soil Water Contents on Urea Hydrolysis and Nitrification in a Newly Reclaimed Tidal Soils

  • Park, Mi-Suk;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The effect of soil water content on the transformation potential of N compounds derived from hydrolysis of urea applied in a reclaimed tidal soils which was saline-sodic was observed to evaluate nitrification rates of urea. Soil samples were collected from Moonpo series at the newly reclaimed area in Saemanguem. For the transformation potential of N compounds from urea (46% N), newly reclaimed tidal soils (RS) were amended with urea at the rates of 0, 10, and 20 kg $10a^{-1}$. With leachate obtained from the incubated RS in a leaching tube at $25^{\circ}C$, urea hydrolysis and nitrification were measured for a total of 30days. The cumulative amounts of $NO_3{^-}$-N in each of the four soils treated with urea was linear with time of incubation. Results showed that increase in pH occurred with increasing application rate of urea and volumetric water content due to hydrolysis of urea. The total N in the RS was decreased with incubation time, indicating that rates of urea hydrolysis was influenced by soil moisture conditions. Also, the cumulative amount of nitrate in RS gradually increased with increase in time of incubation.

Portable Soil pH Sensor Using ISFET Electrode

  • Hong, Youngsin;Chung, Sun-Ok;Park, Jongwon;Hong, Youngki
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Fertilizers have long been used to increase crop yields; however, farmers are still having difficulties in managing fertilizers for growing crops as well as economic problems. The conventional method of soil sampling and laboratory analysis to determine soil pH is time consuming and costly; therefore, a portable pH sensor is developed to characterize spatial or temporal variability within fields via rapid and dense data acquisition. The portable pH sensor comprises an electrode unit, a portable console, and a USB connector. The soil water content (SWC) and electrical conductivity (EC) affect the electrical resistance of soil. An artificial test soil is performed to evaluate the effect of SWC and EC on soil pH. The test results show that stable pH measurements are achieved at SWCs greater than 20 mL (16.3%). Regardless of the SWC, the electric potential difference (EPD) remains at 2.5 g of NaCl. As the EC increases in the soil samples, the EPD increases.

Evaluation of Methane Emissions with Water Regime before the Cultivation Period in Paddy Fields

  • Park, Jun-Hong;Park, Sang-Jo;Kim, Jong-Su;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • Anaerobic decomposition of organic material in flooded rice fields produces methane, which escapes to the atmosphere primarily by transport through the rice plants. The annual amount of $CH_4$ emitted from a given area of rice is a function of the number and duration of crops grown, water regimes before and during cultivation period, and organic and inorganic soil amendments. Soil type, temperature, and rice cultivar also affect $CH_4$ emissions. The field experiment was conducted for three years to develop methane emission factor for water regime before the cultivation period from the rice fields. It was treated with three different water regimes prior to rice cultivation, namely: non-flooded pre-season < 180 days, non-flooded pre-season > 180 days, flooded per-season in which the minimum flooding interval is set to 30 days. Methane emission increased with days after transplanting and soil redox potential (Eh) decreased rapidly after flooding during the rice cultivation. The average methane emission fluxes were $5.47kg\;CH_4\;ha^{-1}day^{-1}$in flooded pre-season > 30 days, 5.04 in non-flooded pre-season < 180 days and 4.62 in non-flooded pre-season > 180. Methane emission flux was highly correlated with soil temperature and soil Eh. Rice yields showed no difference among treatments with water regime before the cultivation period.

Effects of Water Stress on Nitrate Reductase Activity and Abscisic Acid Content in Soybean Plants (수분부족이 콩의 질산환원효소 활성과 Abscisic acid 함량에 미치는 영향)

  • Ryu, Jeom-Ho;Doo, Hong-Soo;Ko, Gyong-Nam;Choo, Byong-Gil;Lee, Kang-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.223-231
    • /
    • 1994
  • To investigate effects of water stress on leaf water potential, nitrate reductase activity and abscisic acid content, Paldalkong, Saealkong and Danyeobkong were subjected to water stress by polyethyene glycol(PEG, MW=6,000) in the water culture and withholding irrigation in soil culture. Leaf water potential and nitrate reductase activity decreased with increaseing of PEG concentration in the water culture. These were higher at 3rd and 5th leaf stage than at 1st leaf stage. Leaf water potential showed no significant differance among the varieties, but nitrate redutase activity was higher in Paldalkong than in Saealkong and Danyeobkong. Leaf water potential and nitrate reductase activity decreased approximately 2.2 times (-1.67 MPa/-0.75MPa) and 47%(3.1${\mu}$ mole nitrite/g.DW/hour/15.9${\mu}$ mole nitrite/g.DW/hour) to control, respectively, after 3 days from water stress treatment in the soil culture. According to increasing PEG concentration, abscisic acid content increased in the water culture and was higher at 5th leaf stage than at 1st and 3rd leaf stage. Paldalkong showed the highest abscisic acid content. Abscisic acid content increased approximately 1.7 times (9.9nmole/g.DW/5.7nmole/g.DW) compared to the control after 3 days from water stress treatment in the soil culture.

  • PDF

불포화 자연토의 포화도에 따른 동전기 정화특성에 관한 실험적 연구

  • 김병일;김익현;김기년;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.302-305
    • /
    • 2003
  • The electrokinetic remediation tests for natural soil contaminated by lead are performed on unsaturated conditions, in which the degree of saturation is controlled through the changes in water content and the constant unit weight. At the degree of saturation of 70% the small acid range and electrical potential is developed. The changes in the water content are little above the saturation of 90%. But it is increased by 1.7 times at the degree of saturation of 70%. Finally, the efficiency of extraction is improved at 70% than 100%.

  • PDF

Water Saving Irrigation Manual of Red Pepper for the Southern Region of Korea (우리나라 남부권역 노지재배 고추의 물절약형 관개 기준 설정 연구)

  • Eom, Ki-Cheol;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.306-311
    • /
    • 2012
  • Water management is the most important and difficult problems in red pepper cultivation.The water requirement of red pepper is different according to the area as well as climate condition, growth stage and soil texture. Also, the measurement of evapo-transpiration (PET) and crop coefficient (Kc) is very difficult especially in field cultivation. The average PET during 30 years of southern region of korea for the red pepper cultivation was a $2.75mm\;day^{-1}$. The water saving irrigation manual with irrigation interval and amount of irrigation according to growing season and soil texture, are developed based on the lysimeter experiments carried out by the RDA for 11 years about potential evapo-transpiration, crop coefficient for the 17 southern region of korea. The water saving irrigation manual can be used with easy to the farmer without soil sampling and any kinds of sensors measuring soil water status.

Effects of Compressed Expansion Rice Hull Application and Drip Irrigation on the Alleviation of Salt Accumulation in the Plastic Film House Soil (팽화왕겨 처리와 점적관개에 의한 염류집적 시설재배지 염류경감 효과)

  • Cho, Kwang-Rae;Kang, Chang-Sung;Won, Tae-Jin;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.372-379
    • /
    • 2006
  • This study was carried out to improve chemical properties of salt-accumulated plastic film house soil. Compressed expansion rice hull was applied at 0, 2.5, 5.0, $7.5Mg\;ha^{-1}$, and drip irrigation was initiated at -33 kilopascals (kPa) of soil water potential and ceased adjusted up to -10 kPa. Another treatment was the application of inflated rice hull at $5.0Mg\;ha^{-1}$ with drip irrigation starting at soil water potential -20 kPa and adjusted to -10 kPa. Lettuce(Lactuca sativa L.) was cultivated at sandy loam soil with $5.1dS\;m^{-1}$ of electrical conductivity (EC). $EC_w$(1:5) of plots treated with $5.0Mg\;ha^{-1}$ of inflated rice hull and irrigated at the point of -20 kPa and -33 kPa of soil water potential was reduced by 26% and 24% less than untreated control plot, respectively. Soil $EC_w$(1:5) has close relationship with $Cl^-$ as well as $NO_3{^-}-N$ and $SO{_4}^{2-}$ in the soil. Total nitrogen in leaf of lettuce was deficient in the earlier growth stage. The yield of lettuce increased by 6% by the application of inflated rice hull of $5.0Mg\;ha^{-1}$ with drip irrigation starting at -33 kPa of soil water potential. It decreased 4% when the drip irrigation was stated at -20 kPa of soil water potential. The amount of water used for irrigation was reduced with the increasing application of inflated rice hull. The watering initiated at the point of -33 kPa was more economical compared with starting at -20 kPa.

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.

Stomatal Movement and Related Environmental Factors to Stomata in the Wheat III. Effect of Soil Water Potential and Lodging on the Stomatal Aperture in Wheat (소맥엽신의 기공운동과 환경조건과의 관계 III. 토양수분 및 도복이 소맥엽신의 기공개도에 미치는 영향)

  • 남윤일;하용웅;박무언
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 1985
  • This experiment was carried out to study in stomatal behaviour of wheat (Chokwang) upon the different soil water potentials, lodging and two different nitrogen treatment. Stomatal aperture was measured at flowering stage under diurnal course with two hour intervals, Stomatal apertures were differently changed according to soil water potentials and leaf position on the stem, showing the rapid closure of stomata at low soil water potential and the narrow opening at low leaf position of stem. Wider stomatal opening appeared at the plot of optimal nitrogen application than that of low nitrogen. It was greatly decreased in opening of stomata at plants lodged, appearing that plant investigated of six days after lodging showed less than 50% than that normal plants, which indicated peculiar decrease of low leaf position of stem at afternoon of diurnal course.

  • PDF