• Title/Summary/Keyword: Soil transfer

Search Result 617, Processing Time 0.032 seconds

Decrease in the Thickness of Capillary Fringe Induced by Surface Active Chemicals in the Groundwater (계면활성물질의 지하수적용에 의한 모관수대 두께의 감소)

  • Kim, Heonki;Shin, Seungyup;Yang, Haewon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2012
  • Capillary fringe divides the groundwater and the vadose zone controlling the diffusive mass transfer of contaminants and gases. The thickness of capillary fringe is of great importance for the rate of contaminant mass transfer across the capillary fringe. Application of surface active chemicals including surfactants and alcohol-based products into the subsurface environment changes the surface tension of the aqueous phase, which in turn, affects the thickness of the capillary fringe. In this study, a bench-scale model was used to assess the quantitative relationship between the surface tension and the thickness of the capillary fringe. An anionic surfactant (Sodium dodecylbenzene sulfonate, SDBS) and an aqueous solution of ethanol were used to control the surface tension of the groundwater. It was found that the thickness of the capillary fringe is directly proportional to the surface tension. The air entry pressures measured by the Tempe Pressure Cell at different surface tensions using SDBS (200 mg/L) and ethanol (20%, v/v) solutions were in good agreement with the thicknesses of the capillary fringe measured by the model. A simple method to correct the conventional Brooks-Corey model for estimating the air entry pressure was also presented.

Effect of pH on the sorption kinetics of chlorophenols onto HDTMA-montmorillonite (염화페놀류 화합물의 HDTMA-montmorillonite에 대한 수착 동력학에 미치는 ph의 영향)

  • Mun Yong, Gwak;Dong Ik, Song
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.186-191
    • /
    • 2004
  • Sorption kinetics of 2-chlorophenol(2-ChP), 2,4-dichlorophenol(2,4-DChP) and 2,4,5-trichlorophenol (2,4,5-TChP), onto montmorillonite modified with hexadecyltrimethyl ammonium cations(HDTMA-mont) were investigated. One-site mass transfer model(OSMTM) and two compartment first-order kinetic model(TCFOKM) were used to analyze kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption and desorption kinetics of chlorophenols in HDTMA-mont. For all chlorophenols, the results of OSMTM analysis indicate that the predominant deprotonated speciation(at pH 9.15) exhibited higher mass transfer coefficient( $k_{s}$ ) than the protonated speciation(at pH 4.85). This is because the deprotonated speciation has stronger hydrophobic interaction than protonated speciation. Most sorption completes in three hours. The fraction of the fast sorption and the first-order sorption rate constants for the fast and slow compartments in TCFOKM were determined by fitting experimental data to the TCFOKM. The results of kinetics reveal that the fraction of the fast sorption( $f_1$) and the sorption rate constants in the fast compartments( $k_1$) were in the order 2,4,5-TChP > 2,4-DChP > 2-ChP, which agrees with the magnitude of the $K_{ow}$ . The first-order sorption rate constants in the fast compartment(10$^{0.8}$ - 10$^{1.22}$ h $r^{-1}$ ) were much larger than those in the slow compartment(10$^{-1}$.74/ - 10$^{-2}$.622/ h $r^{-1}$ ).> ).).

  • PDF

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Shaft Group Efficiency of Friction Pile Groups in Deep Soft Clay (대심도 마찰무리말뚝의 주면 무리효율 분석)

  • Paek, Jin-Yeol;Cho, Jae-Yeon;Jeong, Sang-Seom;Hwang, Taik-Jean
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.49-60
    • /
    • 2012
  • In this study, the behaviors of friction pile groups are investigated using 3D finite element (FE) analysis. The emphasis was quantifying on the shear load transfer (f-w) characteristics of pile groups and the shaft group effects. A framework for determining the f-w curve is proposed based on both theoretical analysis and field load test database. Through comparisons with case histories and FE results, it is shown that the proposed f-w curve is capable of predicting the behavior of a friction pile in deep soft clay. Additionally, a numerical analysis that takes into account the group efficiency factors were performed for major parameter on group pile-soil interaction, such as the pile spacing, pile arrangement, soil condition, and location of pile cap. Based on these results, the shaft group efficiency factors were also proposed.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS (TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구)

  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.

A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement (압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발)

  • Kim, Hyeong-Joo;Mission, Jose Leo C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.5-17
    • /
    • 2009
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater (보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석)

  • Jeong, Sangseom;Hong, Moonhyun;Ko, Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.863-874
    • /
    • 2015
  • The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

Low Temperature Thermal Desorption (LTTD) Treatment of Contaminated Soil

  • Alistair Montgomery;Joo, Wan-Ho;Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.44-52
    • /
    • 2002
  • Low temperature thermal desorption (LTTD) has become one of the cornerstone technologies used for the treatment of contaminated soils and sediments in the United States. LTTD technology was first used in the mid-1980s for soil treatment on sites managed under the Comprehensive Environmental Respones, Compensation and Liability Act (CERCLA) or Superfund. Implementation was facilitated by CERCLA regulations that require only that spplicable regulations shall be met thus avoiding the need for protracted and expensive permit applications for thermal treatment equipment. The initial equipment designs used typically came from technology transfer sources. Asphalt manufacturing plants were converted to direct-fired LTTD systems, and conventional calciners were adapted for use as indirect-fired LTTD systems. Other innovative designs included hot sand recycle technology (initially developed for synfuels production from tar sand and oil shale), recycle sweep gas, travelling belts and batch-charged vacuum chambers, among others. These systems were used to treat soil contaminated with total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs) and dioxin with varying degrees of success. Ultimately, performance and cost considerations established the suite of systems that are used for LTTD soil treatment applications today. This paper briefly reviews the develpoment of LTTD systems and summarizes the design, performance and cost characteristics of the equipment in use today. Designs reviewed include continuous feed direct-fired and indirect-fired equipment, batch feed systems and in-situ equipment. Performance is compared in terms of before-and-after contaminant levels in the soil and permissible emissions levels in the stack gas vented to the atmosphere. The review of air emissions standards includes a review of regulations in the U.S. and the European Union (EU). Key cost centers for the mobilization and operation of LTTD equipment are identified and compared for the different types of LTTD systems in use today. A work chart is provided for the selection of the optmum LTTD system for site-specific applications. LTTD technology continues to be a cornerstone technology for soil treatment in the U.S. and elsewhere. Examples of leading-edge LTTD technologies developed in the U.S. that are now being delivered locally in global projects are described.

  • PDF