• Title/Summary/Keyword: Soil thermal conductivity

Search Result 99, Processing Time 0.036 seconds

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

Vacuum Pressure Effect on Thermal Conductivity of KLS-1 (진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Chung, Taeil
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.51-58
    • /
    • 2021
  • South Korea, as the 10th country to join the Artemis program led by NASA, is actively supporting various researches related to the lunar exploration. In particular, the utilization of water as a resource in the Moon has been focused since it was discovered that ice exists at the lunar pole as a form of frozen soil. Information on the thermal conductivity of lunar regolith can be used to estimate the existence for ice water extraction by thermal mining. In this study, the vacuum pressure effect on thermal conductivity of KLS-1 was investigated with a DTVC (Dusty Thermal Vacuum Chamber). The reliability of KLS-1 was reconfirmed through comparison with thermal conductivity of known standard lunar regolith simulants such as JSC-1A. An empirical equation to assess thermal conductivity considering dry unit weight and vacuum pressure was proposed. The results from this study can be implemented to simulate lunar cryogenic environment using the DTVC.

Evaluation of Potential Utility of Reclaimed Soil from Remediation Sites (정화토의 순환골재 재활용 가능성 평가)

  • Han, Su Ho;Kim, Jeong Wook;Jeon, Soon Won;Park, Seung Ho;Park, Hyeong Min;Min, Seon Ki;Jung, Myung Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.27-35
    • /
    • 2021
  • This study examined the possibility of reutilization of soil reclaimed from contaminated sites after completing remediation. The current status of soil remediation methods in Korea was reviewed and physicochemical properties of soil before and after remediation processes were examined to access the recycling possibility of reclaimed soils based on Recycling Aggregate Quality Standard. The most commonly practiced soil remediation techniques are soil washing, land farming, and thermal desorption. These techniques tend to deteriorate various soil properties including electrical conductivity(EC), organic matter content(OM), available P2O5, and cation exchange capacity(CEC). Evaluation of the properties of soil retrieved after each remediation process indicated soil washing may yield the most suitable soil for use as a filling, covering, back-filling, road pavement, and blocking materials, In addition, the soils reclaimed from land farming and thermal desorption have potential utility as a filling, covering and road pavement materials.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2))

  • Ryozo, Ooka;Hwang, Suk-Ho;Kentaro, Sekine;Yosuke, Shimawaki;Nam, Yu-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF

A Study of Borehole Thermal Behavior with 1-Dimensional Model;Field Test Analysis included (1차원 모델에 의한 보어홀 열거동 해석 및 현지측정)

  • Kim, Dae-Ki;Woo, Joung-Son;Ro, Jeong-Geun;Lee, Se-Kyoun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.550-554
    • /
    • 2007
  • A one-dimensional heat transfer model coupled with parameter estimation is developed in this study to predict the effective thermal conductivities of soil formation and borehole resistances from in situ field test data. In this application a new method of using initial ignoring time(IIT) obtained from error estimation is tried and turned out to be successful in determining soil thermal conductivities. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with the data from laboratory scale experimental setting. Eleven test boreholes were constructed in Ochang, Chungcheong Buk Do, and thermal response test was carried out with each borehole. The results of the in situ tests were analyzed with our 1-D numerical model and compared with the results of line source method. The comparison shows that the thermal properties from line source method is a little lower (${\sim}95%$)than those from numerical method. The reason of such result seems to be the lower thermal conductivity of grout material, which is not counted in line source method.

  • PDF

The experimental study of the thermal conductivity for the soil in South Korea (국내 토양의 열전도도 실험 연구)

  • Cha, Jang-Hwan;An, Sun-Joon;Koo, Min-Ho;Song, Yoon-Ho;Kim, Hyeng-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.24-27
    • /
    • 2006
  • 16개 기상관측소에서 채취한 토양 시료에 대한 토양 물성 및 열특성를 측정하였으며 이를 통하여 공극률, 함수비, 충적밀도, 입도 분포, 유기물 함량, 토양구성광물의 종류 및 함량이 열전도도에 미치는 영향을 파악하였다. 상관성 분석결과 입도분포, 유기물함량 및 토양 구성광물의 종류 및 함량은 낮은 상관성을 보였으며 용적밀도 $(R^2=0.60)$, 함수비$(R^2=0.54)$와 공극률$(R^2=0.56)$은 높은 상관성을 보였다. 또한 함수비(2%)와 토양의 종류에 따른 다중회귀 분석을 통하여 토양의 열전도도를 추정할 수 있는 회귀식을 제시하였다.

  • PDF

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.

Evaluation of Borehole Thermal Resistance in Ground Heat Exchanger (지중 열교환기의 보어홀 열저항 산정에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Han-Byul;Go, Gyu-Hyun;Kim, Min-Jun;Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.49-56
    • /
    • 2013
  • The use of geothermal energy has been increased for economic and environmental friendly utilization. Ground thermal conductivity and borehole thermal resistance are very important parameters in the design of geothermal heat pump system. This paper presents an experimental study of heat exchange rate of U and W type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). U and W type GHEs were installed in a partially saturated dredged soil deposit, and TPTs were conducted to evaluate heat exchange rates under 100-hr continuous operation condition. The heat exchange rates were also calculated by analytical models to estimate borehole thermal resistances and were compared with experimental results. It comes out that multi-pole and equivalent diameter (EQD) models resulted in more accurate agreement than shape factor (SF) model which is currently more often used.

A Study on the Heating Performance of Ground Source Heat Pump System (지중열원 열펌프 시스템의 난방성능 해석)

  • Woo Joung-Son;Kim Dae-Ki;Lee Se-Kyoun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1175-1182
    • /
    • 2004
  • Installations of vertical boreholes for the ground source heat pump system are expensive to install. One way to reduce the initial cost is to increase the specific heat extraction rate of borehole system. However, as the specific heat extraction rate increases the temperature of borehole fluid decreases with the resultant lower Coefficient Of Performance in Heating(COPH) of heat pump system. The purpose of this study is to provide the basic informations about the performance of heat pump system with the specific heat extraction rate and soil thermal properties such as thermal conductivity and temperature. It is shown that the specific heat extraction rate is the most important parameter for the ground source heat pump system. To obtain the reasonable COPH value (COPH > 3) the heat extraction rate should be about 25 W/m or less. Accurate measurements of soil thermal properties are also very important to design the system properly. The effects of borehole thermal resistances are also examined in this study.