• Title/Summary/Keyword: Soil system

Search Result 4,671, Processing Time 0.032 seconds

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

From Theory to Implementation of a CPT-Based Probabilistic and Fuzzy Soil Classification

  • Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1466-1483
    • /
    • 2008
  • This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.

  • PDF

Mapping Soil Contamination using QGIS (QGIS를 이용한 토양오염지도 작성)

  • Kim, Ji-Young;Bae, Yong-Soo;Park, Jin-Ho;Son, Yeong-Geum;Oh, Jo-Kyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.487-496
    • /
    • 2019
  • Objective: The purpose of this study was to create soil contamination maps using QGIS (Quantum Geographic Information System) and suggest selection methods for soil pollution sources for preferential investigation in a soil contamination survey. Method: Data from soil contamination surveys over five years in Gyeonggi-do Province, South Korea (2013-2017) were used for making soil contamination maps and analyzing the density of survey points. By analyzing points exceeding the concern level of soil contamination, soil pollutant sources for priority management were identified and selection methods for preferred survey points were suggested through a study of the model area. Results: A soil contamination survey was conducted at 1,478 points over five years, with the largest number of surveys conducted in industrial complex and factory areas. Soil contamination maps for copper, zinc, nickel, lead, arsenic, fluoride, and total petroleum hydrocarbons were made, and most of the survey points were found to be below concern level 1 for soil contamination. The density of the survey points is similar to that of densely populated areas and factory areas. The analysis results of points exceeding the criteria showed that soil pollutant sources for priority management were areas where ore and scrap metals were used and stored, traffic-related facilities areas, industrial complex and factory areas, and areas associated with waste and recycling. According to the study of the model area, the preferred survey points were traffic-related facilities with 15 years or more since their construction and factories with a score of 10 or more for soil contamination risk. Conclusion: Soil contamination surveys should use GIS for even regional distribution of survey points and for the effective selection of preferred survey points. This study may be used as guidelines to select points for a soil contamination survey.

Shaking table test on soil-structure interaction system (1) : Superstructure with foundation on half-space soil (건물-지반 시스템에 관한 진동대실험 (1) : 반무한지반위의 구조물)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.538-547
    • /
    • 2005
  • This paper presents the shaking table testing method, only using building specimen as an experimental part taking into account the dynamic soil-structure interaction based on the substructure method. The Parmelee's soil stiffness is used as an assumed soil model in here. The proposed methodologies are summarized as: (1) Acceleration feedback method is the one that the shaking table is driven by the motion, corresponding to the acceleration at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the acceleration formulation. (2) Velocity feedback method is the one that the shaking table is driven by the motion, corresponding to the velocity at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the velocity formulation. The applicability of the proposed methodologies to the shaking table test is investigated and experimentally verified in this paper.

  • PDF

Land Surface Soil Moisture Effect on DInSAR

  • Lee C.W.;Kim S.W.;Won J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.174-177
    • /
    • 2004
  • Differential interferometric phases from JERS-1 L­band data sets show spatial variation of path-length ranging from a few mm to several cm. The variation may be caused by changes in soil moisture contents, i.e. variation of penetration depth and the swelling of soils. Although the amount of total effect caused by soil moisture is not measurable, it is clear that the soil moisture according to precipitation is another factor to be considered in DInSAR analysis. We also discuss DInSAR characteristics in a rice paddy according to irrigation conditions, and discrimination of hydrological features such as stream channels and watershed boundaries by applying DInSAR technique.

  • PDF

A simplified method for free vibration analysis of wall-frames considering soil structure interaction

  • Kara, Dondu;Bozdogan, Kanat Burak;Keskin, Erdinc
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.37-46
    • /
    • 2021
  • In this study, a method for free vibration analysis of wall-frame systems built on weak soil is proposed. In the development of the method, the wall-frame system that constitutes the superstructure was modeled as flexural-shear beam. In the study, it is accepted that the soil layers are isotropic, homogeneous and elastic, and the waves are only vertical propagating shear waves. Based on this assumption, the soil layer below is modeled as an equivalent shear beam. Then the differential equation system that represented the behavior of the whole system was written for both regions in a separate way. Natural periods were obtained by solving the differential equations by employing boundary conditions. At the end of the study, two examples were solved and the suitability of the proposed method to the Finite Element Method was evaluated.

Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가)

  • Kim, Hong-Taek;Park, Si-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Environmental Policy Suggestions for Increasing Efficiency of Soil Contamination Investigation Systems including Soil Contamination Fact-Finding Investigation Sites and Special Soil Contamination Management facility Sites (토양오염실태조사 및 특정토양오염관리대상시설 부지 등에서 토양오염조사의 효율성 제고를 위한 환경정책의 고찰)

  • Park, Yong-Ha;Park, Sang-Yeol;Yang, Jae-E.
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.27-47
    • /
    • 2006
  • Attempts were made to increase an efficiency of soil contamination investigation systems(SCISs) including Soil Contamination Fact-Finding Investigation Sites and Special Soil Contamination Management Facility Sites in Korea. In order to increase low efficiencies resulting from inappropriate SCISs, possible policy suggestions are driven based on the results from problem findings of Korean policy and comparisons of policies in industrialized countries including United States, United Kingdom, Germany, the Netherlands and Japan. First, functions of Soil Environment Conservation Act(SECA) on liability should be updated and reinforced to initiate a soil contamination investigation process for stakeholders including an owner(s) or a responsible party(ies) of the potentially soil contamination sites positively. Second, appropriate SCISs should be emerged for implementing the Soil Contamination Fact-Finding Investigation Sites and Special Soil Contamination Management Facility Sites properly. Stakeholders for the potentially contaminated sites should easily access and raise the soil contamination issues, and soil contamination investigation implemented by liable and profit environment (consulting) companies should be encouraged. Third, the soil contamination reporting system of SECA needs to change legally responsible. Further more, public announcement system showing soil quality of a site which exceeds a certain scale would be considerable. Fourth, liable environment (consulting) companies should legally execute Soil Environment Assessment of SECA.

  • PDF

Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System (USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석)

  • Kum, Dong-Hyuk;Ryu, Ji-Chul;Kang, Hyun-Woo;Jang, Chun-Hwa;Shin, Min-Hwan;Shin, Dong-Shuk;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.