• Title/Summary/Keyword: Soil system

Search Result 4,670, Processing Time 0.028 seconds

Energy Conservation for Runoff and Soil Erosion on the Hillslope (산지사면의 유출 및 토양침식에 대한 에너지 보존)

  • Shin, Seung-Sook;Park, Sang-Deog;Cho, Jae-Woong;Hong, Jong-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Examinations on the Reasonable Measuring Methods of the Soil Resistivity for Design of Grounding System (접지시스템의 설계를 위한 대지저항률의 합리적인 측정방법 고찰)

  • Lee, Bok-Hee;Kim, Ki-Bok;Lee, Seung-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • In order to design effectively the grounding system, it is very important to determine the optimum soil resistivity at the desired location of the connection to earth. This paper deals with the reasonable methods of measuring the soil resistivity where grounding electrodes are buried. The soil resistivity at three test sites with different resistivity of soil were measured as functions of the spacing between the test probes in the Wenner's four-point method and the length of test ground rod in the three-point method. In the case of the three-point method, the length of test ground rod of 2-10[m] in length was appropriate in two-layered soil structure. In the length range of 2-10[m], the results measured by the three-point method using the test ground rod with the length corresponding to the spacing between the test probes of the Wenner's four-point method are in good agreement with the data obtained from the Wenner's four-point method.

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Application of Real-Time Monitoring System to In-Situ Soil Remediation Project (원위치 지반오염정화사업에서의 실시간 모니터링 시스템의 적용 사례)

  • Jung, Seung-Yong;Kim, Byung-Il;Han, Sang-Jae;Kim, Soo-Sam;Hong, Sang-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1384-1389
    • /
    • 2005
  • A real-time monitoring system for in-situ soil remediation technologies is developed and then applied to electrokinetic remediation technique in the field trial tests during 150days. The developed system is consisted the controlled program based on internet web page, data logger, measurement instruments and so on. In the measured items there are pH, temperature, electrical current and potential, vacuum pressure. The results indicated that the system is successively applied to electrokinetic remediation technique, and further research considering economic view and multi purpose system for in-situ soil remediation technologies is needed.

  • PDF

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

Management Strategies to Improve Recycling of Remediated Soil with Sustained Soil Health (토양건강성을 고려한 정화토 재활용을 위한 제도 개선)

  • Kim Mintchul;Park Yongha;Chun Mihee;Jung Myungchae;Kim Jeongwook
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.59-67
    • /
    • 2023
  • This review examined the current administrative policies and guidelines for management of reclaimed soils after remediation processes and proposed practical strategies to improve the potential value of the remediated soil as a resource. Three management practices are proposed to facilitate more efficient recycling of remediated soil; obligatory use, quality certification, and tracking of the remediated soils. If properly implemented in utilization of remediated soil, these strategies could contribute to enhancing public safety by assuring soil quality. Such administrative tools, for both suppliers and demanders, are expected to mitigate potential risks associated with the transactions of remediated soil. To enhance the quality assurance process, a soil quality certification combined with the soil health assessment index was proposed. The systematic integration of the suggested practices with soil health assessment can allow to produce optimal results, encompassing affordability, efficiency, and accessibility, which helps establishing more robust 'Remediated Soil Recycling Management System (RSRMS)'. Subsequent researches should be conducted to develop more effective policies that incorporate soil health assessment tools. The proposed management practices for remediated soil, coupled with soil health assessment, can be a pioneering effort to achieve such goals. By fostering an environmentally friendly policies, the sustainable utilization of remediated soil can be attained. Overall, the proposed strategies can provide a sound framework for responsible and sustainable soil management practices.

A Study on the Application of Bamboo Soil Nailing System through Experimental Construction (현장 시험시공을 통한 대나무 쏘일네일링공법의 적용성에 관한 연구)

  • Bang, Yoonkyung;Yang, Younghoon;Suh, Jeeweon;Yoo, Namjae;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2015
  • In this study, a newly modified soil nailing technology using bamboo is developed. And field tests were performed to confirm applicability of bamboo soil nailing system. For the practical use of bamboo soil nailing system, laboratory tests, field instrumentations and pullout tests were also performed to investigate the applicability. The results of field measurement through field tests were compared with the results of numerical analyses for verifying the field construction. As a result, the results of comparing with the field measurement and numerical analyses shows the similar behavior characteristics. Based on this study, applicability for bamboo soil nailing systems were confirmed for the case of comparatively low scale nailed-soil excavation wall. And it is expected that the bamboo soil nailing system can be used as satisfactory reinforcement technique taking the place of existing steel reinforcement soil nailing system. Hereafter, it needed the research for the applicability for the various types of excavation condition, also the active practical application of bamboo soil nailing system is needed.

A Study on Deveolpment of Management System on Soil Moving (토양 반입 부지의 합리적 관리방안 마련을 위한 정책적 고찰)

  • Yoo, Keunje;Yoon, Sung-Ji;Kim, Jongsung;Hwang, Sang-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.257-271
    • /
    • 2017
  • In Korea, soil is being transported in and taken out for the purpose of national land development, but the soil is being moved without consideration of soil contamination. Therefore, this is a policy-focused study of the management system on soil moving. In this study, we analyzed current state of domestic and foreign management and suggested three alternatives for management of soil moving in 1) self-regulation, 2) obligatory regulation, 3) phase-in according to types of regulation. In order to establish a clear and reasonable management system for soil movement in the future, it is necessary to improve the legal and institutional limitations of the current soil environmental law as suggested by this study.

Causality between climatic and soil factors on Italian ryegrass yield in paddy field via climate and soil big data

  • Kim, Moonju;Peng, Jing-Lun;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.61 no.6
    • /
    • pp.324-332
    • /
    • 2019
  • This study aimed to identify the causality between climatic and soil variables affecting the yield of Italian ryegrass (Lolium multiflorum Lam., IRG) in the paddy field by constructing the pathways via structure equation model. The IRG data (n = 133) was collected from the National Agricultural Cooperative Federation (1992-2013). The climatic variables were accumulated temperature, growing days and precipitation amount from the weather information system of Korea Meteorological Administration, and soil variables were effective soil depth, slope, gravel content and drainage class as soil physical properties from the soil information system of Rural Development Administration. In general, IRG cultivation by the rice-rotation system in paddy field is important and unique in East Asia because it contributes to the increase of income by cultivating IRG during agricultural off-season. As a result, the seasonal effects of accumulated temperature and growing days of autumn and next spring were evident, furthermore, autumnal temperature and spring precipitation indirectly influenced yield through spring temperature. The effect of autumnal temperature, spring temperature, spring precipitation and soil physics factors were 0.62, 0.36, 0.23, and 0.16 in order (p < 0.05). Even though the relationship between soil physical and precipitation was not significant, it does not mean there was no association. Because the soil physical variables were categorical, their effects were weakly reflected even with scale adjustment by jitter transformation. We expected that this study could contribute to increasing IRG yield by presenting the causality of climatic and soil factors and could be extended to various factors.