• Title/Summary/Keyword: Soil stiffness

Search Result 565, Processing Time 0.026 seconds

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen;Lixian Tang;Haijun Zhao;Qian Yin;Shuang Dong;Jie Liu;Zhaohan Zhu;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Seismic Performance Enhancement of Residential Flat Plate Structure by Using Base Isolation Devices. (면진장치를 사용한 주거용 무량판구조의 내진성능 향상)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • For the seismic performance enhancement of residential flat plate structure and for the selection of earthquake records, the possibility of base isolation is evaluated and the time history results are reviewed. By evaluating a base isolated stiffness, a target period, and an envelope curve analysis, seismic performance of structure, which has strong rotational mode, is evaluated. For the propriety evaluation of earthquake records usage and scaling method, time history analysis is done with variables such as DBE(design base earthquake) level, MCE(maximum considerable earthquake) level, and 1.4DBE level. From the analysis results, following conclusions can be made; the earthquake records, which are used in base isolation analysis, should be selected by similar soil type which the structure is considered, and should be intensity scaled in a range of mean ${\pm}$ standard deviation of code based design response spectrum.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

The Ultimate Bearing Capacity and Estimation Method of Rigid Pile for Port Structures under Lateral Load (횡하중이 작용하는 항만구조물에서 짧은말뚝의 극한지지력 및 평가방법)

  • Kim, Byung-Il;Han, Sang-Jae;Kim, Jong-Seok;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2014
  • In this study the analysis is performed for influencing factors on the behavior of rigid piles (short pile) by research papers and case study. The results indicated that the point of virtual fixity should be calculated considering the relative stiffness of soil and pile, and Chang (1937) and P-Y method estimated the similar fixity. The values of ultimate resistances of a vertical pile to a lateral load are different for laboratory and field tests in cohesive soils and its ultimate values in laboratory tests are underestimated and in field tests are under or overestimated. The estimated resistance by Hansen (1961)'s method is similar to the value of field tests. The horizontal resistances to laterally loaded pile in cohesionless soils are overestimated in laboratory tests and generally overestimated in field tests. The ultimate resistances by Zhang (2005)'s method, used to the empirical distribution of the resistance, are similar to the test results. In the paper the calculating method and distribution of the ultimate resistance in cohesive soils are proposed. The estimated value by the proposed method is closer to the test results than any other method of calculating ultimate resistance of the piles embedded into cohesive soils.