• Title/Summary/Keyword: Soil standard

Search Result 1,489, Processing Time 0.028 seconds

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Clean Up of Polycyclic Aromatic Hydrocarbon Contaminated Soil by Ethanol Washing (에탄올 세정에 의한 다환방향족탄화수소 오염토양의 정화)

  • Lee, Byung-Dae;Lee, Jin-Shik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.313-319
    • /
    • 2004
  • Ethanol washing with distillation as a cleanup process of polycyclic aromatic hydrocarbon(PAH)-contaminated soil was investigated in this study. A multistage ethanol washing with distillation process was applied to three different types of soil, i.e., sandy soil, alluvial soil, and clay with the initial concentration of benzo(a)pyrene 10 mg/kg, benz(a)anthracene 250 mg/kg, and pyrene 100 mg/kg soil. Ethanol was selected as washing solvent because of its high PAH removal efficiency, low cost, and non-toxicity comparing to the other solvent such as isopropyl alcohol and sodium dodecyl sulfate. The satisfactory results (i.e. lower than benzo(a)pyrene 1 mg/kg, pyrene 10 mg/kg, benz(a)anthracene 25 mg/kg, which are the Canada or the Netherlands soil standard) for three types of soils were obtained by at most five-six times washing. It was suggested that organic content in soil decreased the removal efficiency by ethanol washing.

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

Soil Mechanical Properties for Fill Slope of Forest Road in Mt. Gari (춘천(春川) 가리산(加里山) 지역(地域)의 임도(林道) 성토사면(盛土斜面)의 토질역학적(土質力學的) 특성(特性))

  • Cha, Du Song;Chun, Kun Woo;Ji, Byoung Yun;Oh, Jae Heun
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.98-106
    • /
    • 1999
  • This study was carried out to analyze the mechanical properties of soil for counterplan of recovery construction and the slope stability on fill slope of Sang-gul forest road in Mt. Gari. To analyze the mechanical properties of apparent soil on fill slope in forest road, various soils such as soil, gravelly sandy soil, weathered rock were used as experimental sample in this study. In each experimental sample, particle size distribution test, liquid limit test, plastic limit test, and specific gravity test were carried by Korean industrial standards(KS F 2302, KS F 2303, KS F 2304, KS F 2306, KS F 2308). Through the results of soil particle size distribution analysis, soil moisture content analysis, and specific gravity analysis, soil texture, uniformity coefficient, curvature coefficient, dry density and specific gravity were able to be determined in sampling site. As a results in this study, soil was classified as SP, SW, GP by Unified Soil Classification Standard (USCS). specific gravity and dry unit weight of soil have the value range of 2.52~2.60 and 1.39~1.43, respectively. Also plastic index showed non plastic condition.

  • PDF

Improvement of Soil Quality for Artificial Planting's Ground with Large Integrated Underground Parking Lot in Apartment Complex (대규모 지하통합주차장을 갖는 공동주택 인공식재지반 토양품질 개선방안)

  • Kang, Myung-Soo;Lee, Eun-Yeob;Lee, Jung-Min;Kim, Mi-Na
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • Most landscape areas in apartment complex have been changing. Increasing the area of underground parking lots have an effect on apartment's circumstance. Natural ground was decreased so that the most space in apartment complex were converted into an artificial ground. To suggest the soil quality management, this study examined the actual situation about the soil quality of planting ground such as the quality standard as artificial soil, the difference of natural ground, and the difference of soil quality according to the work classification. As a result, the soil quality of the apartment complex with a large underground parking lot had low quality of soil. Soil physical properties were relatively fine but soil chemical properties needed the quality control. The soil quality of natural ground and artificial ground was not statistically significant and the soil quality by the work classification also had no statistical significance. Therefore, we established improvements about standards of the chemical properties for quality management, the soil quality in the natural ground and applying the equivalent standard according to the work classification.

Pullout Test Results of Geosynthetics using Granite Soil and Standard sand (화강토와 표준사를 이용한 토목섬유의 인발시험결과 비교)

  • Ju, Jae-Woo;Park, Jong-Beom;Kim, Jang-Heung;Song, Chun Seok;Baek, Kyung-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • New concept called the pullout resistance angle has been used to express the friction, cohesion and passive resistance by pullout test at geosynthetics reinforced soil. And also in order to calculate the pullout area, the distribution area method has been used, which is a method of using the curve of tensile force exerted in geogrid. The distribution area ratio showed nearly the same result in the two kind of soils, the granite soil and the standard soil. The pullout resistance angle showed the greater value than friction angle of soil in case of low confining stress of $0.2kg/cm^2$, while it showed the smaller angle than friction of soil in case of high confining stress of $0.8kg/cm^2$.

  • PDF

Determination of Failure Mechanism of Slope Calibration Chamber Tests Using Rainfall Simulation (I) (인공강우에 의한 모형토조사면의 붕괴메카니즘 결정 (I))

  • Jeong, Ji-Su;Jung, Chun-Gyo;Lee, Jong-In;Lee, Seong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study analyzes the determination of slope failure model due to changes in ground condition followed by heavy rainfall. With a simulated rainfall system, the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure, and moisture content, considering rainfall duration and permeability. As a result of the experiment, under the persistent precipitation of 50mm/h, pore-water pressure of weathered granite soil started increasing from the upper position of the slope, and then the pressure increased in middle and bottom portion of it in timely manner. In case of the pore-water pressure of the standard soil, the pressure increased from the middle and bottom portion, and the cause of the different order is suspected to be the difference in permeability between the standard soil and the weathered granite soil. As an outcome, though the result may vary by each foundation, there exists a danger of slope failure not only when the cumulative rainfall is more than 120 mm but also when the saturation level amounts to 60~75%.

A Study of the Effective Weed Control by Herbicides in a Nursery and Forests(I) -Weed Control in a Nursery for Silviculture and Landscape Architecture- (묘포장 및 산지에서 제초제를 이용한 효과적인 잡초방제에 대한 연구(I) -조림.조경용 수묘포장의의 제초관리-)

  • 서병수;김세천;박종민;이창헌
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • Three kinds of soil surface applied herbicides and three kinds of foliage applied herbicides were used to study weed control effect, appropriate concentration, phyto-toxicity against trees and economical efficiency of weed control on trees, Pinus thunbergii, Picea abies, Chamaecyparis obtusa, Quercus accutissima, and Fraxinus rhynchopylla in a nursery. The results were obtained as follows; 1.The control effect of the soil surface applied herbicides showed that the three herbicides; Alachlor, Pendimenthalin and Simazine were alike in their holding effect of weed development, and the sensibility of weed spp. on the herbicides was different. The mean control effect was 58~89%. 2. The weed control effect of the foliage applied herbicides demonstrated that Paraquat dichloride was the best of 84~95% and followed by Glufosnate ammonium and Glyphosate. Especially when the half of its standard amount was treated, the effect of Paraquat dichloride was higher than the other herbicides. 3. Generally, the weed control effect became better as the concentration of the herbcide getting higher. As the concentration of the herbicide got higher, the restraining effect of weed development was continued for a long time in the soil surface applied herbicides, while the weed control effect appeared earlier in the foliage applied herbicides. 4. As the result of the soil surface treatments, 20% of short seedings of Fraxinus rhychopylla treated with twice amount of standard Alachlor died and the rest seeding showed low growth. In the other treatments, there was neither harmful effect of herbicides on the seedings nor growth decrease of them compared to those weeded by men. 5. When treated with foliage applied herbcides, leaves were partially of and discolorated in most treatments. About 0.4~6.2% of Fraxinus thynchopylla, which had short seedings died, and there was no difference in growth with the other treatments. 6. The herbicides showed better economical efficiency over 68% than weed control by men. Especially, Alachlaor of the soil surface applied herbicides showed the highest efficiency(77.6%), while Paraquat dichloride of the foliage applied herbicides was the best(70.3%)..

  • PDF

A Study on the Characteristical Evaluation of pH and Heavy Metals Concentrations of Soil in the Gangwon-do (강원도 지역의 용도별 토양의 수소이온농도 및 중금속 오염 평가)

  • Kim, Joon-bum;Woo, Seung-soon;An, Jung-hyeok;Jeon, Choong;Kwon, Young-Du;Chung, Yeong-Jin;Park, Kwang-Ha
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.556-562
    • /
    • 2005
  • This study was performed to evaluate effects of pH and heavy metals on soil pollution in 167 sites of Gangwon-do. The overall pH range of soils was 4.3~8.4 The average soil pollution of Cd was 0.089 mg/kg (0.000~3.493 mg/kg), Cu 3.093 mg/kg (0.078~60.263 mg/kg), Pb 4.74 mg/kg (0.01~38.08 mg/kg), Hg 0.054 mg/kg (0.002~1.050 mg/kg), and As 0.971 mg/kg (0.031~77.051 mg/kg), but $Cr^{6+}$ was not detected in these soils. The average concentration of heavy metals in these soils was acceptable under the preliminary standard of soil preservation acts in Korea.