• Title/Summary/Keyword: Soil sequence

Search Result 598, Processing Time 0.027 seconds

First Report of Bacterial Wilt by Ralstonia pseudosolanacearum on Peanut in Korea (Ralstonia pseudosolanacearum에 의한 땅콩 풋마름병 발생 보고)

  • Choi, Soo Yeon;Kim, Nam Goo;Kim, Sang-Min;Lee, Bong Choon
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.54-56
    • /
    • 2022
  • A peanut plant showing wilt and browned symptom was found in the field of Gochang, Korea, in July 2021. The symptomatic peanut plant was collected from the field and isolation of the pathogen caused the wilt symptom was performed using the collected sample on TZC media. The dominated colony on media was isolated colony on media was isolated and subcultured of purification. The pure cultured bacteria was identified as Ralstonia solanacearum by sequencing of 16S rRNA gene. Multiplex polymerase chain reaction using phylotype-specific primer set identified isolate as phylotype I (R. pseudosolanacearum). Phylogenetic tree was constructed based on 16S rRNA sequence and it was closed with R. pseudosolanacearum. Pathogenicity of the isolates was assessed by soil drenching inoculation on 4-week-old peanut plant. The wilt symptom was successfully reproduced by inoculation of the isolates after 14 days. This is first report of bacterial wilt caused by R. pseudosolanacearum on peanut in Korea.

Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2)

  • Ferdous, Nadim;Reza, Mahjerin Nasrin;Emon, Md. Tabassum Hossain;Islam, Md. Shariful;Mohiuddin, A.K.M.;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.28.1-28.9
    • /
    • 2020
  • Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.

Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action

  • Li, Ping;Sun, Xinfei;Chen, Junjun;Shi, Jiangwei
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.561-571
    • /
    • 2021
  • Cofferdams made of teel sheet piles are commonly utilized as support structures for excavation of sea-crossing bridge foundations. As cofferdams are often subject to tide variation, it is imperative to consider potential effects of tide on stability and serviceability of sheet piles, particularly, ultralong steel sheet piles (USSPs). In this study, a real USSP cofferdam constructed using new construction technology in Nanxi River was reported. The design of key parts of USSP cofferdam in the presence of tidal action was first introduced followed by the description of entire construction technology and associated monitoring results. Subsequently, a three-dimensional finite-element model corresponding to all construction steps was established to back-analyze measured deflection of USSPs. Finally, a series of parametric studies was carried out to investigate effects of tide level, soil parameters, support stiffness and construction sequence on lateral deflection of USSPs. Monitoring results indicate that the maximum deflection during construction occurred near the riverbed. In addition, measured stress of USSPs showed that stability of USSP cofferdam strengthened as construction stages proceeded. Moreover, the numerical back-analysis demonstrated that the USSP cofferdam fulfilled the safety requirements for construction under tidal action. The maximum deflection of USSPs subject to high tide was only 13.57 mm at a depth of -4 m. Sensitivity analyses results showed that the design of USSP cofferdam system must be further improved for construction in cohesionless soils. Furthermore, the 5th strut level before concreting played an indispensable role in controlling lateral deflection of USSPs. It was also observed that pumping out water before concreting base slab could greatly simplify and benefit construction program. On the other hand, the simplification in construction procedures could induce seepage inside the cofferdam, which additionally increased the deflection of USSPs by 10 mm on average.

A report of 24 unrecorded bacterial species in Korea belonging to the Phyla Proteobacteria and Bacteroidetes isolated in 2020

  • Kim, Ju-Young;Yoon, Jung-Hoon;Joh, Kiseong;Seong, Chi-Nam;Kim, Won-Yong;Im, Wan-Taek;Cha, Chang-Jun;Kim, Seung-Bum;Jeon, Che-Ok;Seo, Taegun;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • In 2020, 24 bacterial strains were isolated from algae, kudzu leaf, mud, pine cone, seashore sand, sea water, soil, tidal flat, and wetland from the Republic of Korea. Isolated bacterial strains were identified based on 16S rRNA gene sequences, and those exhibiting at least 98.7% sequence similarity with known bacterial species, but not reported in Korea, were highlighted as unrecorded species. These isolates were allocated to the phyla Bacteroidetes and Proteobacteria as unrecorded species in Korea. The four Bacteroidetes strains were classified into the families Chitinophagaceae, Flavobacteriaceae, and Sphingobacteriaceae (of the orders Chitinophagales, Flavobacteriales, and Sphingobacteriales, respectively). The 20 Proteobacteria strains belonged to the Aeromonadaceae, Marinobacter, Microbulbiferaceae, Enterobacteriaceae, Erwiniaceae, Morganellaceae, Yersiniaceae, Lysobacteraceae, Halomonadaceae, Moraxellaceae, Pseudomonadaceae, Steroidobacteraceae, Xanthomonadaceae, and Myxococcaceae (of the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, Lysobacterales, Oceanospirillales, Pseudomonadales, Steroidobacter, Xanthomonadales, and Myxococcales). This study focused on the description of 24 unreported bacterial species in Korea in the phyla Bacteroidetes and Proteobacteria belonging to six classes.

Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand

  • Tawong, Wittaya;Pongcharoen, Pongsanat;Pongpadung, Piyawat;Ponza, Supat;Saijuntha, Weerachai
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Cyanobacteria are distributed worldwide, and many new cyanobacterial species are discovered in tropical region. The Nostoc-like genus Amazonocrinis has been separated from the genus Nostoc based on polyphasic methods. However, species diversity within this genus remains poorly understood systematically because only one species (Amazonocrinis nigriterrae) has been described. In this study, two novel strains (NUACC02 and NUACC03) were isolated from moist rice field soil in Thailand. These two strains were characterized using a polyphasic approach, based on morphology, 16S rRNA phylogenetic analysis, internal transcribed spacer secondary structure and ecology. Phylogenetic analyses based on 16S rRNA gene sequences confirmed that the two novel strains formed a monophyletic clade related to the genus Amazonocrinis and were distant from the type species A. nigriterrae. The 16S rRNA gene sequence similarity (<98.1%) between novel strains and all other closely related taxa including the Amazonocrinis members exceeded the cutoff for species delimitation in bacteriology, reinforcing the presence of a new Amazonocrinis species. Furthermore, the novel strains possessed unique phenotypic characteristics such as the presence of the sheath, necridia-like cells, larger cell dimension and akinete cell arrangement in long-chains and the singularity of D1-D1', Box-B, V2, and V3 secondary structures that distinguished them from other Amazonocrinis members. Considering all the results, we described our two strains as Amazonocrinis thailandica sp. nov. in accordance with the International Code of Nomenclature for Algae, Fungi and Plants.

Identification and classification of pathogenic Fusarium isolates from cultivated Korean cucurbit plants

  • Walftor Bin Dumin;You-Kyoung Han;Jong-Han Park;Yeoung-Seuk Bae;Chang-Gi Back
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.121-128
    • /
    • 2022
  • Fusarium wilt disease caused by Fusarium species is a major problem affecting cultivated cucurbit plants worldwide. Fusarium species are well-known soil-borne pathogenic fungi that cause Fusarium wilt disease in several cucurbit plants. In this study, we aimed to identify and classify pathogenic Fusarium species from cultivated Korean cucurbit plants, specifically watermelon and cucumber. Thirty-six Fusarium isolates from different regions of Korea were obtained from the National Institute of Horticulture and Herbal Science Germplasm collection. Each isolate was morphologically and molecularly identified using an internal transcribed spacer of ribosomal DNA, elongation factor-1α, and the beta-tubulin gene marker sequence. Fusarium species that infect the cucurbit plant family could be divided into three groups: Fusarium oxysporum (F. oxysporum), Fusarium solani (F. solani), and Fusarium equiseti (F. equieti). Among the 36 isolates examined, six were non-pathogenic (F. equiseti: 15-127, F. oxysporum: 14-129, 17-557, 17-559, 18-369, F. solani: 12-155), whereas 30 isolates were pathogenic. Five of the F. solani isolates (11-117, 14-130, 17-554, 17-555, 17-556) were found to be highly pathogenic to both watermelon and cucumber plants, posing a great threat to cucurbit production in Korea. The identification of several isolates of F. equiseti and F. oxysporum, which are both highly pathogenic to bottle gourd, may indicate waning resistance to Fusarium species infection.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Complete Chloroplast Genome assembly and Annotation of Milk Thistle (Silybum marianum) and Phylogenetic Analysis

  • Hwajin Jung;Yedomon Ange Bovys Zoclanclounon;Jeongwoo Lee;Taeho Lee;Jeonggu Kim;Guhwang Park;Keunpyo Lee;Kwanghoon An;Jeehyoung Shim;Joonghyoun Chin;Suyoung Hong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.210-210
    • /
    • 2022
  • Silybum marianum is an annual or biennial plant from the Asteraceae family. It can grow in low-nutrient soil and drought conditions, making it easy to cultivate. From the seed, a specialized plant metabolite called silymarin (flavonolignan complex) is produced and is known to alleviate the liver from hepatitis and toxins damages. To infer the phylogenetic placement of a Korean milk thistle, we conducted a chloroplast assembly and annotation following by a comparison with existing Chinese reference genome (NC_028027). The chloroplast genome structure was highly similar with an assembly size of 152,642 bp, an 153,202 bp for Korean and Chinese milk thistle respectively. Moreover, there were similarities at the gene level, coding sequence (n = 82), transfer RNA (n = 31) and ribosomal RNA (n = 4). From all coding sequences gene set, the phylogenetic tree inference placed the Korean cultivar into the milk thistle clade; corroborating the expected tree. Moreover, an investigation the tree based only on the ycf1 gene confirmed the same tree; suggesting that ycf1 gene is a potential marker for DNA barcoding and population diversity study in milk thistle genus. Overall, the provided data represents a valuable resource for population genomics and species-centered determination since several species have been reported in the Silybum genus.

  • PDF

Evaluation of Antibiotics Resistance for Human-harmful Bacteria Isolated from Eco-friendly and Practical Cultivation Farms of Hot Pepper and Tomato (고추 및 토마토 친환경 및 관행재배지에서 분리한 인체 유해세균의 항생제 저항성 평가)

  • Lee, Sung-Hee;Do, Jiwon;Kim, Seong Kyeom;Oh, Kwang Kyo;Park, Jae-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.4
    • /
    • pp.381-394
    • /
    • 2023
  • This study was conducted to monitor the antibiotics resistance of human-harmful bacteria isolated in the agricultural environment for hot peppers (Capsicum annuum) and tomato (Lycopersicon esculentum). As a result, we isolated 120 bacterial species (34 on fruits, 48 in soil, 21 in water, and 17 in manure), identified them with the 16S rRNA sequence, analyzed minimum inhibitory concentration (MIC) for 26 antibiotics using Sensititre ARIS Hi-Q system and then evaluated whether each bacterial genus acquired resistance for the tested antibiotics or not, according to the CLSI criteria. From difference in MIC between eco-friendly (EFM) and practical (PFM) cultivation farms, Klebsiella spp. isolated from EFM was resistant to ampicillin (AMP) and nalidixic acid (NAL), and that isolated from PFM was resistant to streptomycin (STR) and tetracycline (TET). Enterobacter spp. isolated from EFM was resistant to AMP and azithromycin (AZI), and that isolated from PFM was resistant to AMP, AZI, and STR. Meanwhile, Pseudomonas spp. isolated from EFM and PFM were all resistant to AMP, AZI, cefotaxime (FOT), cefoxitin (FOX), ceftriaxone (AXO), CHL, NAL, and STR. Staphylococcus spp. isolated from EFM and PFM were resistant to gentamycin (GEN), STR, and kanamycin (KAN), and in particular, that from EFM showed resistance for erythromycin (ERY). In conclusion, our study suggested that EFM lead STR antibiotics resistance for human-harmful bacteria to decrease, because only the bacteria isolated from hot pepper and tomato crop with PFM have showed resistance against STR antibiotics, regardless of bacterial genus.