• 제목/요약/키워드: Soil resistance value

검색결과 136건 처리시간 0.024초

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

보어홀 전열저항이 보어홀 길이에 미치는 영향에 관한 연구 (A Study of the Effect of Borehole Thermal Resistance on the Borehole Length)

  • 이세균;우정선
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.20-27
    • /
    • 2009
  • The effect of borehole thermal resistance on the borehole length is studied. In performing this work a new concept BLRR(borehole length reduction rate) is developed based on the line source model. The solution of line source model is shown to be valid through the comparison with the data of thermal response test. It is shown that BLRR is a function of soil thermal conductivity(k) and borehole thermal resistance($R_b$). The value of BLRR increases with increasing k, which means reducing $R_b$ is more effective when k is high. The reduction of borehole length with change of $R_b$ is easily estimated with BLRR. The validity of BLRR is also examined with EED analysis.

Effect of soil condition on the coefficient of lateral earth pressure inside an open-ended pipe pile

  • Ko, Junyoung;Jeong, Sangseom;Seo, Hoyoung
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.209-222
    • /
    • 2022
  • Finite element analyses using coupled Eulerian-Lagrangian technique are performed to investigate the effect of soil conditions on plugging of open-ended piles in sands. Results from numerical simulations are compared against the data from field load tests on three open-ended piles and show very good agreement. A parametric study focusing on determination of the coefficient of lateral earth pressure (K) in soil plug after pile driving are then performed for various soil densities, end-bearing conditions, and layering conditions. Results from the parametric study suggest that the K value in the soil plug - and hence the degree of soil plugging - increases with increasing soil densities. The analysis results further show that the K value within the soil plug can reach about 63 to 71% of the coefficient of passive earth pressure after pile driving. For layered soil profiles, the greater K values are achieved after pile driving when the denser soil layer is present near the pile base regardless of number of soil layers. This study provides comprehensive numerical and experimental data that can be used to develop advanced theory for analysis and design of open-ended pipe piles, especially for estimation of inner shaft resistance after pile driving.

토양수분과 경도가 동력경운기의 견인성능에 미치는 영향 (Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor.)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

현장실증시험에 의한 대지저항률별 접지저항 보정계수의 결정 (The Determination of Corrective Coefficient for Ground Resistance about Variation of Soil Resistivity by Field Test)

  • 심건보;김경철;이형수;박재덕;박상만
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.288-292
    • /
    • 2006
  • Usually, equations that calculate ground resistance of earth electrode was already informed well by form of earth electrode. But, when apply on the spot because general expressions are very insufficient at point that calculate exact ground resistance value by variation of earth electrode, and constant value that corrective coefficient for ground resistance calculation is fixed regardless of change of the earth resistivity specially is presented, it is actuality that difficulty is. Therefore, in this study, about these problem, proposed corrective coefficient for calculation of ground resistance according to change of the earth resistivity.

  • PDF

보도포장의 종류에 따른 보행자의 안전성 및 쾌적감에 대한 연구 (A Study on the Safety and Comfort of Pedestrians according to the Type of Sidewalk Pavement)

  • 최재진
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.66-71
    • /
    • 2015
  • Safety, resilience and comfort of pedestrian were assessed by the British Pendulum Test and SB/GB factor test at 8 kinds of sidewalk pavement. Sidewalk paving materials were normal concrete, porous concrete, concrete block, soil concrete, asphalt, rubber chip/resin mixture, wood chip/resin mixture and floor tile. In addition, a survey was conducted to investigate the perception of pedestrians on the sidewalk paving material. As a result, while the skid resistance value was measured in the most 60BPN above, the floor tile showed a low value of about 30BPN. The ratios of SB factor to GB factor of the elastic pavements(rubber/resin mixture and wood chip/resin mixture) appeared to be relatively large when compared with those of the conventional sidewalks. The survey showed that respondents perceived as more safe and comfortable elastic pavements compared to conventional pavements. Approximately 50% of respondents answered that hardened soil pavement was the most environmentally friendly.

풍화토지반 얕은기초에 대한 LRFD 저항계수 분석 (Analysis of LRFD Resistance Factor for Shallow Foundation on Weathered Soil Ground)

  • 김동건;김훈태;서지원;유남재
    • 한국지반환경공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.5-11
    • /
    • 2015
  • 최근 구조물 기초 분야에 대한 한계상태설계법이 국제적인 기술표준으로 요구됨에 따라 연구기반이 미약한 얕은기초에 대한 하중저항계수설계법 개발의 필요성이 대두되었다. 본 연구에서는 얕은기초 설계 시 풍화토 지반에 위치한 얕은기초에 대한 하중저항계수설계법의 적용 방안에 대하여 연구를 수행하고 그에 따른 저항계수를 제안하였다. 얕은기초 국내 설계 및 시공자료를 수집하여 확률통계학적 기법에 의한 분석을 수행함으로써 풍화토지반 얕은기초의 불확실성과 저항편향계수를 정량적으로 분석하고, 신뢰성 해석 LEVEL II를 이용하여 목표신뢰도 지수를 평가하였으며, 산정된 신뢰도지수를 기존 문헌 값과 비교 분석하여 풍화토 지반 얕은기초에 대한 목표신뢰도 지수를 선정하였다. 국내 풍화토지반 얕은기초에 대한 하중계수를 적용하여 저항계수를 보정하였으며, AASHTO의 하중계수를 적용한 저항계수와 비교 분석하였다.

등가반경개념에 의한 코어링 접지공사의 고찰 (Investigation of Coring Grounding Construction by Equivalent Radius Concept)

  • 김세호;김일환;양문길
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.103-110
    • /
    • 2003
  • 대지 저항률이 높은 암반, 사력층 지역에서의 접지 저항은 일반적인 봉형 접지 전극으로는 얻기가 거의 불가능 하며 원하는 저항값을 얻기 위해서는 깊이 매설한 접지 전극과 접지 저항 저감제를 충분하게 사용하는 코어링 접지 방식을 채택하여 시설하는 것이 적절하다고 판단된다. 본 연구는 둥가반경 개념을 이용하여 코어링 접지 전극의 반 경이 확장되는 것을 보였으며 이릎 토대로 낮은 접지 저항이 얻어지고, 제주지역과 같이 고저항 지대에서의 각 토 양의 대지 저항률을 추정함으로써 다른 고저항 지대에서의 접지공사시 개략적인 접지저항을 예측하여 기초 자료로 사용할 수 있도록 하였다.

화강토와 표준사를 이용한 토목섬유의 인발시험결과 비교 (Pullout Test Results of Geosynthetics using Granite Soil and Standard sand)

  • 주재우;박종범;김장홍;송춘석;백경종
    • 한국지반신소재학회논문집
    • /
    • 제4권2호
    • /
    • pp.39-45
    • /
    • 2005
  • 인발 저항각이라는 새로운 개념은 토목섬유로 보강된 지반에서 인발 시험을 행할 때 발생되는 마찰력, 점착력, 수동저항을 포함하는 것이다. 인발 면적을 계산함에 있어 분포 면적법을 사용하였는데, 이는 그리드에 발생되는 인장력 곡선을 이용하는 방법이다. 분포면적비는 화강토나 표준사 지반에서 거의 비슷한 결과를 나타내었다. 인발 저항각은 낮은 구속하중인 $0.2kg/cm^2$일 때는 마찰각보다 더 큰 값을 보이지만, 높은 구속하중인 $0.8kg/cm^2$일 때는 마찰각보다 더 작은 각을 보였다.

  • PDF