• 제목/요약/키워드: Soil related parameter

검색결과 69건 처리시간 0.027초

흙-수분 특성곡선 방정식을 이용한 체적함수비의 예측 (Prediction of the Volumetric Water Content Using the Soil-Water Characteristic Curve on an Unsaturated Soil)

  • 송창섭
    • 한국환경복원기술학회지
    • /
    • 제7권6호
    • /
    • pp.39-48
    • /
    • 2004
  • The purpose of this paper was to confirm the application of the equation of the soil-water characteristic curve on an unsaturated soil. To this ends, a series of suction test was conducted on the selected 4 kinds of soil which is located in Korea, using the modified pressure extractor apparatus. And it was carried out to analyze the experimental parameters which can describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that the matric suction was varied according to the grain size distribution, amount of fine grain particle and void ratio. Also it was found that the residual volumetric water content was decreased with the void ratio, but the index related air entry value, the soil parameter related water content and the parameter with residual water content were increased with the void ratio. And the application of equation of the soil-water characteristic curve was confirmed for the various conditions and the various state by the comparison between the volumetric water content measured by the experiment and the predicted values.

포천 화강토의 건조단위중량에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성 (Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Dry Density of Pocheon Granite Soil)

  • 조원범;김찬기
    • 한국지반신소재학회논문집
    • /
    • 제10권4호
    • /
    • pp.29-36
    • /
    • 2011
  • 본 연구는 포천 화강토의 건조단위중량을 $16.67kN/m^3$, $17.26kN/m^3$, $17.65kN/m^3$으로 각각 변화시켜 등방압축-팽창시험과 구속압력을 달리한 일련의 배수삼축시험을 하였다. 그리고 이 시험자료를 이용하여 회귀분석을 근거로 건조단위중량의 변화에 따른 Lade의 단일항복면 구성모델의 토질매개변수의 변화 특성을 알아보았다. 그 결과 탄성성분, 파괴규준, 경화함수, 소성포텐셜에 관련된 토질매개변수는 상대밀도의 증가에 따라 선형적인 증 감현상을 보이고 있다. 그리고 항복함수에 관련된 토질매개변수 h와 ${\alpha}$는 상대밀도에 따른 변화가 미세하고 파괴규준에 관련한 토질매개변수와 관련성이 매우 높아 ${\eta}_1$에 관한 식으로 대체할 수 있으며, 이 식을 이용한 수치해석 결과 양호하게 예측하고 있는 것을 확인 할 수 있었다.

유기질층을 포함한 고소성 실트질 연약지반의 침하 예측 (Prediction of Settlement for the Highly Plastic and Silty Soft Ground Contained of the Organic Deposits)

  • 유남재;김겸;유창선
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.91-98
    • /
    • 2011
  • In this thesis, from the results of settlement measurement performed at the site where embankment earthwork was carried out on the ground consisting of highly plastic and silty soft soils interlayered with organic deposits, various methods of predicting the embankment settlement such as Hoshino's method, Asaoka's method, hyperbolic method, ${\sqrt{s}}$ method and Monden's method were used to investigate their applicability and the inverse method of finding the soil parameter related to consolidation was used to predict the consolidation behavior in the future. It was confirmed that reliable prediction of consolidation behavior under various conditions could be done to estimate soil parameter related to consolidation such as the consolidation index and consolidation coefficient by the inverse method of comparing the measured settlement with the predicted value by the settlement prediction methods.

  • PDF

불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향 (The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope)

  • 김재홍;유용재;송영석
    • 지질공학
    • /
    • 제31권2호
    • /
    • pp.165-178
    • /
    • 2021
  • 자연사면을 대상으로 강우에 따른 침투해석 및 사면안정해석을 통하여 사면토층의 흙-함수특성곡선(SWCC) 맞춤계수에 따른 안정성의 영향을 평가하였다. 연구 대상사면의 토질시료를 채취하여 토층의 물리적, 역학적 및 불포화 특성을 실험하였다. 현장조건의 흙-함수특성곡선(SWCC)의 맞춤계수 α 및 n을 변화시켜 침투해석을 통한 포화심도를 산정하였으며, 이를 고려하여 한계평형해석기법을 이용한 사면안정해석을 수행하였다. 강우에 의한 침투해석 결과에 따르면 맞춤계수 α가 감소함에 따라 토층 내 포화심도가 급격하게 증가하며, 전체 토층에 대한 포화시간도 짧아지는 것으로 나타났다. 그리고 포화심도를 고려한 사면안정해석결과에 의하면 맞춤계수 α가 감소함에 따라 사면안전율은 급격하게 감소하지만, 맞춤계수 n을 증가시키더라도 사면안전율의 변화는 매우 작은 것으로 나타났다. 따라서 강우침투로 인한 포화심도와 이를 고려한 사면안정성은 흙-함수특성곡선(SWCC)의 맞춤계수 α에 크게 영향을 받으며, 맞춤계수 n의 영향은 상대적으로 매우 작음을 알 수 있다.

HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가 (Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map)

  • 최윤석;정영훈;김주훈;김경탁
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동 (Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations)

  • 이종원;류봉조;이규섭;공용식;오부진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF

유묘 뿌리썩음병 진전에 따른 이산재배 토양의 유별 (Grouping the Ginseng Field Soil Based on the Development of Root Rot of Ginseng Seedlings)

  • 박규진;박은우;정후섭
    • 한국식물병리학회지
    • /
    • 제13권1호
    • /
    • pp.37-45
    • /
    • 1997
  • Disease incidence (DI), pre-emergence damping-off (PDO), days until the first symptom appeared (DUS), disease progress curve (DPC), and area under disease progress curve (AUDPC) were investigated in vivo after sowing ginseng seeds in each of 37 ginseng-cultivated soils which were sampled from 4 regions in Korea. Non linear fitting parameters, A, B, K and M, were estimated from the Richards' function, one of the disease progress models, by using the DI at each day from the bioassay. Inter- and intra-relationships between disease variables and stand-missing rate (SMR) in fields were investigated by using the simple correlation analysis. Disease variables of the root rot were divided into two groups: variables related to disease incidence, e.g., DI, AUDPC and A parameter, and variables related to disease progress, e.g., B, K and M parameters. DI, AUDPC, and DUS had significant correlations with SMR in ginseng fields, and then it showed that the disease development in vivo corresponded with that in fields. Soil samples could be separated into 3 and 4 groups, respectively, on the basis of the principal component 1 (PC1) and the principal component 2 (PC2), which were derived from the principal component analysis (PCA) of Richards' parameters, A, B, K and M. PC1 accounted for B, K and M parameters, and PC2 accounted for A parameter.

  • PDF

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • 제5권3호
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.